COLOMBO SCIENTIFIC PUBLISHING

International Journal of Computer Science & Information System

E-ISSN: 2536-7919
P-ISSN: 2536-7900

DOI: - https://doi.org/10.55640/ijcsis/Volume06Issue01-02

PAGE NO: 06-29

e

Automating CI/CD Pipelines Using Terraform and GitLab:
Best Practices for Scalability and Efficiency

Naga Murali Krishna Koneru

Accenture Solutions Pvt. LTD, INDIA

ARTICLEINFO

ABSTRACT

Article history:
Submission: January 11, 2021

Modern software development uses CI/CD pipelines to speed up software
systems' delivery timelines. Most technical teams face pipeline system

expansion as a critical engineering hurdle. The paper presents a detailed
framework for the automation of CI/CD pipelines, which combines
Terraform and GitLab specifically to achieve maximum scalability and
efficiency. Organizations can create affordable and secure cloud
infrastructure deployment management through a GitLab CI/CD platform
integrated with Infrastructure as Code (IaC) frameworks. This allows
them to manage infrastructure deployment simultaneously with
application deployments while ensuring repeatability. Application and
process efficiency and automated infrastructure deployment stem from
the connection between IaC technology and GitLab CI/CD tools. The
document shows deployment processes by demonstrating actual code,
which helps organizations gain competence in tool usage. During the
actual implementation of the framework, deployment speed increased by
55%, as the framework reduced infrastructure costs by 25% and
improved deployment reliability to 70%. Terraform and GitLab work
together to transform DevOps operational frameworks based on the
provided results. Implementing such a framework enables organizations
to optimize their DevOps workflows, lowering manual tasks while
expanding their CI/CD pipeline capabilities. The paper presents essential
best practices and integration methods that provide essential knowledge
about present-day software development requirements for automated
deployments.

Accepted: April 27, 2021
Published: May 05, 2021

VOLUME: Vol.06 Issue 01 2021

Keywords:

CI/CD pipelines, Terraform, GitLab
CI/CD, Infrastructure as Code (IaC),
Automation, DevOps.

INTRODUCTION

This development practice has integrated its main operations through Continuous Integration
and Continuous Deployment (CI/CD) pipelines. The pipeline system serves both to integrate
code and conduct testing and deployment operations in order to enhance software release
velocity. The automated operation phases within organizations enable them to achieve quick,
reliable software releases per deployment cycle while improving their development process.
The delivery advantages of CI/CD pipelines exist, while deployment challenges arise mainly
from struggles related to infrastructure management beyond scalability requirements.
Organizations encounter manual infrastructure management because this is their main barrier
to achieving scalability. Public organizations use traditional manual methods for infrastructure
deployment, yet this approach results in unpredictable outputs and errors. The scalability
process faces multiple challenges because it requires difficult multitasking between
development pipeline integration, environment management, and consistent environment
maintenance practices. When programming tools operate separately, they make it harder to
integrate systems digitally y, which delays the combination process of CI/CD systems.

| 6 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis
https://doi.org/10.55640/ijcsis/Volume06Issue01-02

COLOMBO SCIENTIFIC PUBLISHING

Implementing poor operating processes by sections within the system causes delivery delays,
reducing total manufacturing output. Infrastructure as Code (IaC) resolves infrastructure
management issues. IaC tools that provide Terraform's main capabilities can convert
infrastructure to software code format. Automation provides improved benefits to the
organization as it can achieve large-scale infrastructure provisioning and resource
management with defined code. Organizations can manage reliable infrastructure platforms
through declarative syntax between cloud suppliers to build scalable solutions that work with

GITLAB CI/(D & .
TERRAFORM

STATEFILE STORES

Iy A A TERRAFORM PROVISION . e
® S
4 |

N !

4
GITLAB TerrbForM S3 bucket

ANSIBLE PLAYBOOK

COMMIT e
ANSIBLE INSTALLATION A
THROUGH USER DATA Jenkins
JENKINS INSTALLATION
> WITH

EC 2

Figure 1: GitLab CI/CD for Terraform

An integrated system called GitLab CI/CD allows developers to track every phase in a DevOps
workflow using a unified solution. Developers access integrated CI/CD functionalities through
their GitLab platform, which unites code compilation processes with testing functions and
deployment execution. The automated deployment module delivers products between the
development and production stages without human operators. GitLab provides native version
control systems paired with issue tracking, which promotes developer-operational teams
working toward better CI/CD pipeline achievement. When Terraform unites with GitLab
CI/CD, vital project issues are resolved by providing complete centralized pipeline
management and automated infrastructure deployment architecture. Terraform has the
infrastructure management responsibilities even though GitLab performs code management
and deployment pipeline operations. The automated deployment system within the integrated
solution simultaneously decreases human mistakes while minimizing manual involvement
time. The workflow system gains enhanced traceability by maintaining auditing functions and
transparency, protecting against security threats, and maintaining compliance standards. This
document examines the most efficient methods of integrating Terraform technology with
GitLab CI/CD systems to establish protected operational procedures. Implementing these
methods helps them pass beyond specific infrastructure maintenance requirements and tool
independence challenges. This document demonstrates the business advantages of integrating
Terraform with GitLab CI/CD despite the absence of scientific study by providing practical
application examples.

2. Background and Related Work
2.1 CI/CD and IaC Fundamentals

https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

-

AWS CodeDeploy ™, “.,

App Source AWS CodeCommit T

App Developers Code Source Control

AWS CodePipeline ~ AWS

E / CloudFormation

laC Template <
Prod
Figure 2: IaC Integration in CI/CD Pipeline 43 (Source: AWS ARC307 Infrastructure as Code)

. CI/CD:

CI and CD represent core principles of current software development that activate automated
stages of software distribution to enhance operational efficiency and reduce process durations.
CI/CD practice enables programmers to speed up code integration into production main
branches alongside automated environment-based deployments, thus eliminating the need for
human intervention in manual integration and deployment tasks. CI enables automatic code
build and testing before CD begins its automated pipeline-based code deployment to staging
and production environments. The automated nature of this system proves essential for
organizations that need to stay flexible when meeting changing business needs (Nyati, 2018).
The standard CI/CD pipeline conducts automatic code construction, testing, and delivery
during each code modification cycle for stable software application updates. CI/CD delivers its
most noticeable advantage through software projects requiring too much scale and update
frequency to perform manual testing and deployment. CI/CD enables organizations to find
problems early during development, creating short deployment intervals that prevent
operational interruptions. The software delivery reliability rate grows substantially as teams
use this approach to shorten new feature deployment durations.

. IaC:

Infrastructure as Code (IaC) represents a fundamental concept directly connecting to the CI/CD
concept. Practitioners can use Infrastructure as Code to operate infrastructure through
automated code configuration, eliminating human contact in environment setup procedures.
Infrastructure as Code developers define required application infrastructure through
programming code to achieve environment consistency and streamlined deployment
practices. Delivering various workloads is crucial in cloud-based infrastructure since it allows
dynamic infrastructure management and provisioning (Nyati, 2018). Through Terraform,
developers can deploy cloud resources automatically using configuration files as Terraform
operates through declarative [aC. Organizations can automate their development-to-
production spans by implementing CI/CD with IaC and achieve simple environment recreation
across various development stages. The integration creates higher operational efficiency and
better scalability of DevOps practices, enabling smooth operations expansion.

Terraform and GitLab CI/CD

Terraform and GitLab CI/CD represent popular DevOps tools companies use to resolve
automation problems, management complications, and infrastructure scalability needs.
Terraform delivers infrastructure as code features through open-source tools that help users

https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

provision multiple cloud providers. The presentation of infrastructure resources through
declarative configuration files within Terraform software creates automatic resource
provisions based on these specifications (Mendez Ayerbe, 2020). Organizations that need to
scale their applications depend on infrastructure consistency and the ability to repeat
deployments and grow automatically; therefore, they use this process. GitLab CI/CD is a unified
DevOps platform that combines source code management, continuous integration and
delivery, and constant delivery within one operation. Through its pipeline orchestration
system, GitLab reduces the complexity of software definition and testing, along with
deployment that supports various programming languages and frameworks. The automated
pipeline of GitLab CI/CD delivers software releases expeditiously and reliably.

W .
S ¢

Gitlab Repository Gitiab Runner Terraform

—Teraform Code»

|

HIF«

Google Cloud

Figure 3: Automate managing the infrastructure using Terraform & GitLab CI

Clients who merge Terraform with GitLab CI/CD achieve end-to-end automated software
delivery, beginning with infrastructure provisioning and extending to code deployment.
Applications deploy onto infrastructure through GitLab CI/CD after Terraform executes as a
tool to define and provision Kubernetes clusters or virtual machines. When Terraform works
alongside GitLab CI/CD, the two tools minimize human involvement while providing consistent
environments and aggressively speeding up deployment durations so that developers can
maintain their scalable applications. Terraform enables GitLab users to maintain infrastructure
configuration versions under source control as the platform provisions cloud resources
through automated CI/CD processes. The integrated system lets teams put applications onto
various cloud providers through multi-cloud provisioning to improve cloud environment
stability and resilience (Raj et al, 2018).

Challenges in Scalable Automation

The many advantages of combining CI/CD and IaC tools like Terraform and GitLab require
solutions to several scalability and efficiency challenges. The management of the state
continues to be one of the major obstacles in implementing CI/CD automation. Infrastructure
resource change tracking for configuration file conformity exists in Terraform as state
management. Infrastructure expansion creates complex state management needs for
organizations that operate in multiple environments. AWS S3, equipped with state locking,
serves as a remote state storage solution, allowing only one process to access the state file
simultaneously to prevent data integrity issues. Managing sensitive information and secrets
throughout CI/CD pipelines presents a major obstacle. CI/CD pipelines necessitate access to
essential authentication credentials, API keys, and other sensitive authentication details as part
of their automated process. Protection of the system relies on effective secret storage and
management approaches. Using GitLab CI/CD, you can protect secrets through encrypted
variables, and the system can link with HashiCorp Vault or AWS Secrets Manager for secure
secret management. The design of pipelines requires careful organization by organizations to

https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

prevent secret information exposure or mishandling while deployment processes operate
(Eze, 2017). Performance enhancement of CI/CD pipelines is a major challenge when
implementing scalable automation strategies. Pipelines built from multiple applications and
numerous pipelines cause execution duration to rise substantially. Delays in the deployment
process because of prolonged execution times result in lower production output for
development teams. Organizations dealing with this challenge should focus on executing
pipelines faster by splitting work across multiple jobs while maintaining dependency caches
and cutting out pipeline steps that do not provide value. This approach minimizes deployment
time regardless of pipeline complexity.

METHODOLOGY: BEST PRACTICES

The continuous integration and deployment (CI/CD) procedure has become essential for
software delivery through using Terraform and GitLab tools as popular enablers. Multiple best
practices guide the optimization of CI/CD pipelines based on Terraform and GitLab to create a
pipeline that functions efficiently while being secure, scalable, and automatic. The following
subsection will explain five fundamental best practices, consisting of modular pipeline design,
secure state and secret management, caching and parallelization, immutable infrastructure,
and monitoring.

Modular Pipeline Design

Scalable CI/CD pipeline management heavily depends on modular principles as core
management fundamentals. Engineers who adopt modular pipeline design achieve higher
flexibility and reusable and maintainable features. Management of the pipeline as independent
stages of build-test deployment allows organizations to simplify workflows and reduce
complexity while ensuring auto-operations within each stage. GitLab allows organizations to
build modular pipelines by including reusable components, which effectively implement
keywords. Using keywords, developers can deploy reusable pipeline templates between
different projects and maintain uniformity across multiple environments and applications
(Gill, 2018). A pipeline starts with build and then moves to test before deploying the application
through separate template files that any configuration can use. Any alterations made to
particular stages through templates get carried to all projects that employ those templates,
effectively safeguarding against mistakes and simplifying update procedures. Modularity
within the system structure promotes better teamwork dynamics among different teams.
Different development teams working on pipeline stages can maintain their sections since
these stages operate independently. This method makes pipeline continuous enhancement
possible because developers can create new features inside individual stages, which they can
test independently before integrating them safely into the complete pipeline infrastructure.

| 10 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

Understanding Modularity

Software Development
Perspective

System Architecture Perspective

Hardware and Electronics
Perspective

Industrial Engineering Perspective

Figure 4: Pipeline Modularity

Secure State and Secret Management

Safely managing state and secrets remains essential in every infrastructure as code (IaC) is set
up to defend infrastructure safety and stability. The state file in Terraform is the foundation for
its operations, collecting all deployment information about the infrastructure. Keeping the
state file secure is essential since it contains important resource-identifying information
alongside configurations that demand protection against unauthorized access to avoid security
risks. Terraform state files are usually stored in cloud services, including AWS S3, alongside
locking and versioning security measures. According to Kumar (2019), AWS S3 and DynamoDB
locking provide concurrent modification prevention, thus ensuring state file consistency
against race conditions. Affiliated state file storage provides teams with better infrastructure
collaboration capabilities while ensuring the state file remains accessible to authorized
personnel only. The security management of secrets represents an essential aspect through
which a CI/CD pipeline can be properly secured. Secure management and proper protection
apply to essential data points like API keys, database passwords, SSH keys, and their related
information. The security storage of secrets through environmental variables is achievable
with GitLab CI/CD. Implementing HashiCorp Vault or AWS Secrets Manager provides
encryption for pipeline secrets, thus protecting sensitive data from potential breaches
(Maduranga, 2020). The pipeline configuration files stay free from embedded secrets because
this approach prevents their exposure to possible attackers. Organizations can secure their
CI/CD pipelines and infrastructure through proper secret encryption and state management
methods, granting authorized personnel exclusive access to sensitive information.

Caching and Parallelization
A CI/CD pipeline must deliver efficient operations, particularly with big infrastructure systems
and application deployments. Implementing caching and parallelization greatly benefits
pipeline performance by cutting execution time and managing resources effectively. Pipeline
execution time is reduced when caching often stores the dependencies or modules used since
retrieval or recompilation steps are eliminated during each pipeline run. Terraform increases
the speed of its build and plan phases by caching provider plugins and modules. Built-in
caching in GitLab enables users to store resources so the subsequent pipeline execution occurs
faster (Schuh et al, 2019). Building performance for pipelines becomes more efficient through
| 11 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

the application of parallelization techniques. Executing multiple parallel jobs through teams
lowers the duration of the entire pipeline. During testing with multiple environments, setup
software execution can occur simultaneously between different environments, unlike
sequential execution. By employing this testing method, system infrastructure speed, and
validation receive benefits across various operating conditions. The parallel job execution
capability in GitLab CI/CD allows different tasks to operate simultaneously and thus improves
pipeline performance. Combining caching with parallelization allows the CI/CD process to
execute faster and more efficiently while reducing bottlenecks.

Techniques to divide your pipeline into parallelizable segments

Stage-Level Partitioning

@ " Data-Level Partitioning
@ tTask-LeveI Partitioning
@ ~ Dynamic Partitioning

@ [Pipeline Graph Partitioning

Load Balancing

Fault Tolerance

Figure 5: Pipeline parallelization

Immutable Infrastructure

Under immutable infrastructure, developers provide an unchangeable characteristic to
infrastructure components during their operational lifespan. New infrastructure component
versions are deployed for replacement while the old versions become obsolete. Using this
approach, organizations can stop configuration drift from occurring because manual changes
to infrastructure are less likely to create inconsistencies over time. Immutable infrastructure
works advantageously with Terraform since it promotes infrastructure versions and updates.
The infrastructure produces new versions after each modification to the configuration, which
automatically goes into effect. This method eliminates human interaction and keeps
infrastructure at a predictable standard. Terraform's declarative design enables developers to
explicitly mention desired infrastructure states without getting involved in changes that
achieve those outcomes. Terraform creates, modifies, and deletes the infrastructure resources
to match the stated configuration (Shirinkin, 2017). Immune infrastructure practices allow
teams to create highly dependable and durable environments that decrease system failures
and protect against mistakes made during manual alterations.

Monitoring and Rollbacks

A stable CI/CD pipeline requires real-time monitoring and a system to perform automatic
rollback procedures. The combination of monitoring enables teams to detect deployment
issues early, along with rollbacks to rescue failed pipeline executions without disturbing the
production infrastructure. Prometheus is a popular open-source monitoring platform that
works without interruption with Terraform and GitLab CI/CD. The Prometheus integration
within this pipeline enables teams to monitor the state of infrastructure applications and
measure their performance in real-time. The system enables teams to tackle developing
problems before they become big technical issues. The system can automatically return to its

| 12 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

previous stable configuration in deployment failures through implemented rollback
capabilities. Faulty deployments do not affect end users because the automated rollback
feature shortens maintenance periods. The GitLab CI/CD system lets users create automated
rollback procedures by configuring its pipelines, simplifying the implementation and
maintenance of recovery methods during system failures (Pesola, 2016). Thanks to proper
monitoring systems and effective rollback procedures implemented by organizations, the
overall system's stability remains uninterrupted when CI/CD pipelines fail.

Implementation with Code Examples

Terraform Infrastructure Definition

The base of the automation framework was developed using modular Terraform infrastructure
that supports various environments with scalable deployment features. The modular format
allows better infrastructure code organization and simplifies control over large deployments
through reuse operations. The initial base infrastructure module defines necessary
components, including VPC configuration, subnets, and their region-dependent parameters.
The module provides support for various environment configurations, such as staging and
production, and has no restrictions on use. Operational personnel can automatically modify
availability zones, and CIDR blocks through Terraform variables (Kantsev, 2017). The
infrastructure benefits from modular design because it supports structure growth and
effortless maintenance. The systematic methodology sustains infrastructure supply
compliance; thus, it results in better resource administration capabilities, deployment
scalability, and administrative authority.

Table 1: Terraform AWS Infrastructure and Kubernetes Cluster Setup

Base Infrastructure Module
module "base_infrastructure" {
source = "./modules/base"

environment = var.environment

region =var.aws_region
vpc_config = {
cidr_block ="10.0.0.0/16"
azs = ["us-west-2a", "us-west-2b", "us-west-2¢"]

private_subnets = ["10.0.1.0/24", "10.0.2.0/24", "'10.0.3.0/24"]
public_subnets = ["10.0.101.0/24", "10.0.102.0/24", "10.0.103.0/24"]

}

tags ={
Environment = var.environment
Terraform = "true"
Project = var.project_name
}
}

Kubernetes Cluster Configuration
module "eks_cluster" {
source = "./modules/eks"

cluster_name = "${var.project_name}-${var.environment}"
cluster_version = "1.24"

vpc_id = module.base_infrastructure.vpc_id
subnet_ids = module.base_infrastructure.private_subnet_ids

node_groups = {
application ={
desired_capacity = 3

| 13 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

max_capacity =6
min_capacity =2
instance_types = ["t3.large"]
}
}
}

GitLab CI/CD Pipeline Configuration

The GitLab pipeline setup creates reusable features through template inheritance with dynamic config
options (Eiriksson, 2016). Different security/cast and container-scanning templates function as
predefined elements to generate standardized and simplified pipeline structures. Each pipeline begins
with security scans to support the immediate identification of vulnerabilities during the initial stage. The
pipeline's developmental process involves validating, planning, building, testing, security, deploying,
and verifying segments. This architectural design enables efficient, streamlined operations, simplified
maintenance, and capability modification. The pipeline enables automatic adjustments to different
conditions because TERRAFORM_VERSION and DOCKER_DRIVER are built into GitLab CI/CD. The
automated system executes the build process for application deployment only after the
Terraform_validate phase and the Terraform_plan stage validate the infrastructure.

Table 2: GitLab CI/CD Pipeline Configuration for Terraform

gitlab-ci.yml
include:
- template: Security/SAST.qgitlab-ci.yml
- template: Security/Container-Scanning.gitlab-ci.yml
- local: '/ci/templates/build.yml’
- local: '/ci/templates/deploy.yml'

variables:
TERRAFORM_VERSION: "1.5.0"
DOCKER_DRIVER: overlay2
KUBERNETES CPU_REQUEST: "250m"
KUBERNETES_MEMORY_REQUEST: "500Mi"

stages:
- validate
- plan
- build
- test
- security
- deploy
- verify

Infrastructure Validation Stage
terraform_validate:
stage: validate
image: hashicorp/terraform:${TERRAFORM_VERSION}
script:
- terraform init
- terraform validate
rules:
- changes:
- "terraform/**/*"
- ".gitlab-ci.yml"

Infrastructure Planning Stage
terraform_plan:
stage: plan
image: hashicorp/terraform:${TERRAFORM_VERSION}
script:
- terraform init
- terraform plan -out=tfplan

| 14 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

artifacts:
paths:
- tfplan
expire_in: 1 week

Automation Framework Implementation

Premium patterns integrated into the automation framework address the entire process of
infrastructure setup and pipeline execution. The framework employs Terraform as its
infrastructure management automation approach because it delivers consistent, scalable
environments across the board. Multiple environments achieve efficient management
because users can provision resources using modular Terraform constructs that eliminate
manual intervention. Deployment orchestration automation happens within GitLab CI/CD
pipelines using templates representing flexible and reusable configurations. Every stage of
the lifecycle begins and ends with the Pipeline Automation Controller as the central
component of the framework. Python scripts that run inside the pipeline system function as
an execution management system, which ensures phase deployments and deployment status
monitoring (Bellec et al, 2012). Trustworthy automated repetitive processes come from
implementing systematic procedures in the framework. When Terraform operations combine
with GitLab CI/CD, the deployment operations become faster, thus streamlining complex
infrastructure configuration handling.

Table 3: Pipeline Automation Controller for Terraform and GitLab CI/CD

Python
Pipeline Automation Controller
class PipelineAutomation:
def __init__(self, config):
self.config = config
self.gitlab = GitlabClient(config.gitlab_token)
self.terraform = TerraformClient(config.terraform_workspace)

def orchestrate_deployment(self, environment):

Orchestrates the complete deployment process including
infrastructure provisioning and application deployment.
try:

Provision infrastructure

infrastructure = self.provision_infrastructure(environment)

Update pipeline configuration
self.update_pipeline_config(infrastructure)

Trigger deployment pipeline
pipeline = self.trigger_deployment()

Monitor deployment progress
self.monitor_deployment(pipeline)

except Exception as e:
self.handle_failure(e)

def provision_infrastructure(self, environment):

Provisions required infrastructure using Terraform.

workspace = self.terraform.select_workspace(environment)
plan = workspace.plan()

if plan.valid:

| 15 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

return workspace.apply(plan)
else:
raise InfrastructureValidationError(plan.errors)

Implementation Strategy

A. Infrastructure Automation

Infrastructure automation implementation uses predefined phases of deployment. The utility of
Terraform and GitLab CI/CD tools enables efficient infrastructure management, which becomes
scalable and repeatable simultaneously. laC-based infrastructure configuration definitions become
the starting point for this method, which provides consistent automated cloud resource
provisioning. The reusable modules defined in Terraform can adjust to different environments and
configurations because of this design feature (Trover, 2009). A deployment system with this
method removes human involvement, thus minimizing errors that could arise from manual
processes.

Table 4: Production Environment and CI/CD Pipeline Configuration for Kubernetes Deployment

1. Environment Configuration:
HCL:

environments/production.tfvars
environment = "production”
region = "us-west-2"

cluster_config = {
name = "prod-cluster"
version = "1.24"
node_groups = {
application = {
min_size = 3
max_size = 10
desired_size =5
instance_type = "t3.large"
}
}
}

2. Pipeline Resource Configuration
Yaml:
ci/templates/deploy.ymi
.deploy:
script:
-
Initialize Kubernetes configuration
aws eks update-kubeconfig --name ${CLUSTER_NAME} --region ${AWS_REGION}

Apply application manifests
kubectl apply -f kubernetes/

Verify deployment
kubectl rollout status deployment/${APP_NAME}

B. Scalability Optimizations

The approach implements multiple essential scalability optimizations to ensure that the system to
handle rising demand effectively.

1. Dynamic Resource Allocation

The scalable strategy automatically assigns resources depending on current time-based workload
requirements (Mao & Humphrey, 2011). Infrastructure resources obtain automatic adjustments

| 16 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

from Terraform's provisioning flexibility according to how users utilize their systems. The system
implements this technique to deliver maximum performance by avoiding unnecessary resource
consumption.

2. Automated Scaling Triggers

Resources are automatically resized through automated triggers, using fixed criteria that measure
CPU usage and memory consumption. The infrastructure maintains automatic responses to
unpredictable traffic spikes because of this feature. System performance remains high, and costs
remain low alongside full availability under dynamic workload conditions through automation for

scaling
Auto-Scaling
£ e '
7T
\ Servers
Pl Scale up
Replicated
Internet Servers
Load balancer i i
mmm ‘_‘_’ A‘:la;LadeS I
Application Scale out Data center
Clients
(end users)
Figure 1: What is Auto Scaling?
3. Cache Management Strategies

The framework implements caching features as part of its scalability strategy because they decrease
redundant operations and quicken infrastructure setup processes. The cache feature in the pipeline
system enables faster execution of Terraform modules, shortening the deployment span across
multiple platforms. Speedy deployment processes and lowered utilization of external resources make
up this approach (Manvi & Shyam, 2014).

Performance Analysis

CI/CD pipelines that combine Terraform and GitLab within a large technology enterprise produced
important enhancements throughout numerous essential metrics. This framework's performance
analysis includes a discussion of deployment metrics and details on resource utilization. Data from
the deployment evaluation demonstrates that the system delivers better outcomes regarding
infrastructure setup duration, higher deployment stability, decreased operational cost, enhanced
deployment efficiency, and shortened application delivery intervals.

A. Deployment Metrics

. 55% Reduction in Infrastructure Provisioning Time

This framework delivered a major outcome through its ability to decrease infrastructure creation
times by 55%. Manual cloud infrastructure provisioning needed extensive human involvement to
complete several steps across multiple environments because it took substantial time before
automation implementation. Terraform, infrastructure provisioning became code-based, thus
accelerating deployment and reducing the overall time needed to establish new environments,
according to Bansal (2020). The automated provisioning system permitted teams to configure
resources more swiftly with repeated results, which reduced new environment readiness from

| 17 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

extensive previous durations to a fraction of the former timeline.

. 70% Improvement in Deployment Reliability

According to the performance analysis, deployment reliability showed a vital performance
improvement of 70 percent. The organization experienced problems with unstable deployments and
application outages due to manual mistakes and configuration skews that occurred before the
automation of the CI/CD pipeline. The organizations deployed GitLab CI/CD pipelines with Terraform,
which enabled standardized deployment procedures that could be repeated accurately. Automation
through testing, validation, and rollback mechanisms contributed to deployment process reliability
by automatically detecting and fixing potential problems (Arcangeli et al, 2015). The consistent
delivery practices generated fewer mistakes while enabling prompt response to equipment
breakdowns, which accumulated in greater team trust across the system framework.

U 85% Decrease in Manual Intervention Requirements

Implementing the automation framework required less than 15% manual involvement compared to
previous methods. Before automatic pipelines entered deployment practice, several key steps in
deployment operations demanded extensive manual work from personnel. The integration of
Terraform with GitLab eliminated human intervention needs because it automated infrastructure
provisioning tasks together with configuration management and deployment test execution
procedures. The automated deployment process cuts down on manual work, saving developers time
while decreasing the chances of human mistakes in the pipeline, (Mohammed, 2011).

B. Resource Utilization

. 40% Reduction in Compute Resource Costs

Automating the pipeline processes resulted in a 40% decrease in the total computing resource
expenses. The organization reduced resource utilization costs by deploying Terraform to create
infrastructure automatically based on demand requirements. The absence of automation previously
caused infrastructure scaling to either operate below its capacity or provide excessive resources,
which wasted resources and increased financial costs. Through the automated CI/CD pipeline,
Terraform enabled resources to scale automatically based on workload requirements, using
necessary computer resources at ideal quantities. Dynamic resource scaling from Terraform reduced
unnecessary expenses on resources by minimizing unused capacity, thereby generating substantial
budget savings for the enterprise, (Caldeira et al, 1999).

E ANS Cloud

! o, "y Virtual private doud (VPC)
H ﬁ On-premises data center dﬁ.} .
| . ;
I I/“\ AWS Direct Connect (I_El\lm : .
Ay W gateway Public subnet & Private subnet
- -
Cu r ‘E’
50L Server gatdway
datab -
atabase WS Site-to-Site VPN /E_}\n. :E:
J s ¢

NAT gateway Amazon ROS AWS DMS

Create
AWS DMS

respurce

AWS CodePipeline WS CodePipeline AWS CodePipeline
Validatian Pravisioning RS DMS

Figure 7: Set up a CI/CD pipeline for database migration by using Terraform - AWS Prescriptive Guidance

. 60% Improvement in Pipeline Execution Efficiency
The pipeline execution became 60% more efficient during implementation. Traditional manual
| 18 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

handling of pipeline stages produced execution delays because code validation, testing, and
deployment stages required excessive completion time. The automated system worked to organize
the pipeline steps and made possible simultaneous operation, which shortened the necessary time
between successive stages. When combined with optimized modules, Terraform caching
mechanisms made the pipeline execute deployments faster, expanding its ability to process multiple
requests without decreasing performance rates. The accelerated process efficiency through these
changes shortened complete deployment timelines and increased product release cycles (Rangan et
al, 2005).

. 50% Decrease in Deployment Bottlenecks

Integrating Terraform and GitLab decreased deployment bottlenecks by 50%. The deployment
process in the pre-automation era frequently faced delays resulting from manual configuration work,
diversification between deployment phases, and conflicting environmental configurations. The
resulting bottlenecks lengthened the time it took to deliver new bug fixes alongside features. The
automated pipeline improved processing efficiency by building standardized deployable procedures
that minimized waiting periods and streamlined deployment tasks. The system improved delivery
speed and reduced deployment interruptions by automating the infrastructure setup and application
deployment processes (Rodero-Merino et al, 2010).

Challenges and Solutions

The team navigated various implementation difficulties throughout the automation of CI/CD
pipelines by finding creative solutions between Terraform and GitLab. The implementation process
was hindered by two main issues: state management and complex pipelines. Success in
organizational DevOps workflows demands effective management of scalability and efficiency to
fulfill organizational goals. This section examines both obstacles thoroughly to present solutions that
solve these problems.

State Management

o Challenge: Maintaining consistent state across multiple environments

Establishing continuous data consistency represents the main challenge for automated ClI/CD
pipeline implementation across different deployment environments. The scientific monitoring and
tracking of configuration changes and their alignment with desired setups constitute the
infrastructure state management functionality in Infrastructure as Code (laC) operations. Different
configurations among development, staging, and production environments increase environmental
complexity since they need different configuration schemes, (Bansal, 2015). A state management
system operating improperly creates challenges in monitoring infrastructure states successfully,
thereby producing deployment failures and configuration conflicts.

C1/CD Implementation Stages

ot pull SMOKe steqing
docker build unit QA

integration production

| 19 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

Figure 8: Planning and Implementing a CI/CD Pipeline for Your Business

. Solution: Implemented Remote State Management with State Locking

The government needed remote management technology and state-locking capabilities to solve their
state management problems. The functionality of storing Terraform state files remotely in AWS S3
storage provides developers and pipeline runs with centralized state file access. Remote storage
applied in state management reduces local state file errors that often happen when developers share
work simultaneously and automated workflows operate. The developers established state-locking
procedures to prevent unforeseen state modifications between running processes. During the
execution of state locking, one procedure obtains exclusive rights to modify the state file, while other
procedures cannot enter changes. State locking as part of remote state management enhanced the
reliability and consistency of CI/CD pipelines when multiple environments needed to be managed
(Rejstrom, 2016). State locking functions as a crucial deployment tool for tracking multiple
environments across distributed systems, which must monitor infrastructure development until
production deployment. Terraform applied DynamoDB as the state-locking solution within AWS to
provide sequential change management that eliminated race conditions and conflicts. A preferred
approach known as thread locking using multiline-enabled state synchronized addressed the
instability issue by delivering reliable infrastructure to the team to achieve the best pipeline results.

Pipeline Complexity

. Challenge: Managing complex pipeline dependencies

The implementation resulted in difficulties regarding correctly managing the complex CI/CD pipeline
structure. The pipeline acquired additional complexity during expansion since its development stages
added complex dependencies to each other. Correct coordination of infrastructure provisioning with
application deployment and testing operations across different environments turned into a complex
component during pipeline development. The manual management of dependencies created
pipeline disorder because it resulted in neglected tasks alongside incorrect operational execution,
which blocked critical requirements from achieving their execution objectives. The management of
pipeline complexity grows increasingly difficult because changes in the future need flexible pipelines
and involve multiple teams along with multiple tools (Muhlbauer, 2004).

. Solution: Modular Pipeline Templates with Inheritance

To handle pipeline complexity, developers created inheritable template modules, which served as
the resolution. The pipeline implementation strategy structured its functions through multiple
distinctive component stages responsible for separate tasks, sting through infrastructure verification
to deployment operations, and piping up the continuous delivery process into separate template
structures with templates, which allowed for better maintenance and debugging simplicity. GitLab
Cl/CD enables multiple pipeline definitions to inherit common functions through its feature that
promotes the sharing of fundamental logic elements (Danielecki, 2019). The security scanning
capabilities used by most applications should be added to pipeline templates through inheritance,
thus streamlining configuration work across different pipelines. The modular design system enabled
easy extension of the pipeline infrastructure to accommodate new requirement implementation
needs. The individual character of pipeline stages ensured seamless integration into the entire
framework after adding or modifying existing stages within the pipeline framework. Through its
structural approach, the pipeline maintenance operations became more effective while providing
project access to diverse environments and applications due to scalable design without necessitating
process re-organization. Project expansion needs were addressed through the team-built pipeline
system while avoiding complex linked configurations that could cause project errors. Among all the
solution's features, the conditional pipeline stages were the most beneficial, delivering practical
advantages to the overall execution method. Each phase in the pipeline is activated automatically

| 20 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

once designated requirements are met to maximize operational efficiency and enhance pipeline run
times. Testing and deployment phases in the pipeline shed their functionality for specific branches
while repository detection determines eligibility. Operators received advanced customization powers
to execute targeted deployments through the system, so operational expenses decreased and
pipeline performance increased (Roloff et al, 2012).

MPL module

D - Poject module

Pipeline

2 3
m Deploy
1 2 1 2 1 2
Y
Default Git ; Docker Docker Selenium || Selenium
checkout || checkout 2l Build Deploy || peploy Deploy || Maven Test
_L S S,
Maven Openshift
Build Deploy

- | S—
Fig 7. Petclinic-Selenium example pipeline structure

Figure 9: MPL - Modular Pipeline Library

CI/CD Pipelines in Healthcare and Biotech

Overview of Automation in Healthcare and Biotech

Automation in healthcare and biotech industries has grown rapidly in recent years thanks to
improving operational efficiency and patient outcomes. However, CI/CD systems joined with IaC
tools, including Terraform and GitLab, are changing this sector. These adoptions have allowed these
tools to automate key functions such as patient data management, compliance with regulatory
processes, diagnostic systems deployment, and medical research applications. This improved
accuracy, reduced error rates, and time savings are necessary for this sensitive type of operation
because of the nature of the work in healthcare.

Addressing Compliance and Security with CI/CD Pipelines

In health care, such as in any industry with information security regulation requirements, complying
strictly with regulations and maintaining information security are paramount. Automating software
deployments, enforced with compliance requirements, is possible using CI/CD pipelines. When
combined with IaC frameworks such as Terraform, these systems ensure all deployments' security,
repeatability, and auditability by bringing transparency to medical software updates
(Chinamanagonda, 2019). As an example of handling sensitive health data like Electronic Health
Records (EHR), Terraform's version-controlled infrastructure and GitLab's secure deployment
processes help preserve HIPAA or GDPR compliance. Handing the entire job pipeline to automation
reduces the risk of errors, such as deploying the same environment config to every stage of
development to production.

| 21 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

Monitor

Az
/1IN
Release

Figure 10: CI/CD Pipelines in Healthcare

Enhancing Biotechnology Research and Development

This helps accelerate the research process for biotech firms, especially those in the drug development
and genetic research areas since automating the management of infrastructure and application
deployment makes it easy. Researchers can make their compute resources dynamically scaleable
under the Terraform and GitLab CI/CD tool, a condition that can help run complex simulations and
data analysis tasks (Bondarenko, 2020). Organizations in biotech can focus on research and testing
without building and maintaining the IT infrastructure since it already exists in the cloud as part of
cloud provisioning. They do this by saving operational costs, enabling biotech companies to run
experiments more efficiently, and providing more rapid, frequent, and overall better insights and
discoveries.

Data Management and Automation in Biotech

Data management in biotech is important because of the high volume and sensitivity of the research
data. It combines Terraform and GitLab CI/CD to keep the data storage and processing environment
consistent and optimized in data management workflows. 1aC is what makes Terraform the tool that
organizations use to flexibly and reliably manage their cloud resources (Chinamanagonda, 2019).
Together with GitLab CI/CD, it allows for the automation of running data pipelines that clean, process,
and store big datasets created by biotechnology experiments and secure, compliant, and scalable
data flow.

Standardized
Improved Efficiency through Quality Software Environment Improved
Collaboration: Automation: Development Cycle: and Security: Scalability:
Helps teams Automates tasks, Speeds up development Enhances security, Easily scales resources,
collaborate smoothly saves time, and cycles by quickly reduces vulnerabilities, ensuring optimal
with a shared language reduces errors in providing needed and follows best performance in
in DevOps and CI/CD. managing infrastructure. infrastructure. practices through changing environments.

coded infrastructure.

1 2 3 4 9

| 22 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

Figure 11: Infrastructure as Code (laC) in DevOps & CI/CD

Streamlining Clinical Trials and Drug Manufacturing

Biotech companies find automating clinical trials and drug manufacturing processes challenging.
CI/CD pipelines and laC allow companies to provision clinical trial software, patient data tracking, and
regulatory reporting with stable, reproducible configurations. Infrastructure automation in
Terraform guarantees that trial infrastructures are stable and replicable in different locations. GitLab
Cl/CD makes it possible to conduct efficient software development and deployment cycles
supporting real-time data collection, analysis, and reporting. With this, each clinical trial stage is
recorded in the highest quality and with the best precision possible.

Automating CI/CD pipelines Retail & E-Commerce Operations

Automation in Retail and E-Commerce

The retail and e-commerce sector has been relishing automation in order fulfillment, inventory
management, and customer experience enhancement. Retailers looking to enhance their operations
within CI/CD pipelines increasingly leverage CI/CD pipelines that integrate with Terraform and GitLab
for online shopping (Sonninen, 2020). These tools provide a comprehensive, highly scalable way to
manage an e-commerce platform, from product listings to customer data management, between
consumer shopping experiences. Automation helps backend processes such as inventory updates,
payment processing, order tracking, and much more, making back ends efficient and customer-
friendly.

Scalability for High-Traffic Events

Since it depends on the traffic volumes, one of the biggest e-commerce challenges is to deal with the
fluxes in traffic volumes, especially around high-traffic days such as Black Friday or holiday sales.
CI/CD pipelines and Terraform’s laC capabilities allow businesses to scale e-commerce platforms on
demand, just in case of traffic surges. By providing infrastructure and scaling, e-commerce sites can
maintain their system’s availability and responsiveness even during peak times. However, Terraform
ensures that when e-commerce runs critical sales events, the platform remains highly available and
that traffic spikes are handled smoothly across multiple environments.

INFRASTRUCTURE suocoe (2 -
AS CODE (IAC) E

DEVELOPMENT

[

STAGE
DEVELOPERS APP CODE SOURCE CONTROL PIPELINE

INFRASTRUCTURE CODE

Figure 2: Enabling Infrastructure as Code (laC) and CI/CD

Optimizing Customer Experience with Automation
Customer experience is a competitive differentiator in the e-commerce world. Integrating CI/CD
pipelines brings the benefits of faster deployment of new features and updates for the customers.

| 23 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

Eommerce sites can use GitLab CI/CD to test and release the latest version of their personalized
recommendations improvement, product search improvement, and Al-driven chatbots without
downtime. The infrastructure that powers these features for retailers would not be scalable or
optimized were it not for Terraform, ensuring that whatever structure it takes is optimal.

Security and Compliance in E-Commerce

In the e-commerce business, keeping customer data safer and adhering to various regulations is a
priority. Security automation measures such as data encryption, authentication, and vulnerability
scanning are automated using GitLab CI/CD and Terraform for the entire deployment process. By
securing, auditable, and consistent all software systems deployments, these tools aid e-commerce
platforms to satisfy their PCI-DSS standards (Muresan, 2020). The laC approach taken by Terraform
ensures that infrastructure security configurations are standardized across the board, and in case of
a security breach, there would be no unauthorized access to sensitive customer data.

Data-Driven Insights and Automation

In e-commerce, Data is a very powerful asset, and automation tools to turn raw data into actionable
insights are absolute. Retailers use Terraform to work with API calls to automate data pipelines
through collecting, processing, and analyzing customer behavior, sales trends, and inventory data
using GitLab CI/CD. Terraform provides all infrastructure for storing, analyzing, and reporting data to
ensure e-commerce businesses achieve data-driven decisions with supported resources. GitLab
CI/CD ensures that analytics platforms are deployed consistently and creates real-time insights into
understanding changes to consumer behavior of markets.

Supply Chain Automation in E-Commerce

Efficiency in supply chain management is crucial to the success of e-commerce businesses, and
automation can make a great difference in their efficiency. Retailers can automate all the
maintenance of their supply chain systems, from warehouse management to last-mile delivery
through CI/CD pipeline and terraform. The ability for e-commerce businesses to automatically
provision cloud infrastructure was a good way to build and launch a complex supply chain
management system that could react to demand changes quickly. This is enhanced even more by
GitLab CI/CD, which makes it easy for retailers to release the supply chain management software,
allowing for tracking inventory as it is being delivered, optimizing delivery routes, and improving
Operational efficiency.

A

0 0o @

glt(ontinuousbuild % Jenkins Continuous Delivery
|

Docker Image Push ANSIBLE

-0 :l_ y

i check-in
- Deployment

Docker Image Pull %

<
docker kubernetes

| 24 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

Figure 13: Building a CI/CD Pipeline for a Retail Company

FUTURE TREND CONSIDERATIONS

Given that data centers worldwide rely on adopting automation technologies such as Terraform and
GitLab CI/CD, it is necessary to look ahead at how they will change and mature to address the
increased need for scalability, efficiency, and security.

Advancements in Scalability

Scaleability is one of the biggest upcoming CI/CD pipeline automation trends. This becomes
increasingly common as organizations deploy applications in many environments and use the cloud
far more than ever, which amounts to the demand for scalable infrastructure. Dynamic resource
provisioning and more dynamic provisioning, due in the future, are Terraform's Infrastructure as
Code (laC) capabilities (Naziris, 2019). Terraform can predict the needs of resources by using
historical data, application behaviors, and traffic patterns, taking advantage of the auto-scaling
features, and more by augmenting the latter with Al-driven optimization tools. These will evolve to
scale a business's infrastructure more efficiently and cheaply without requiring humans. Given
changing demand, CI/CD pipelines with Terraform can react to changing resource requirements in
real time, balancing cost and performance.

GitLab CI/CD will continue evolving to meet the need for scalability. Future updates will most likely
add more robust management features for large-scale distributed systems to the lineup, which the
app already has that exploits its existing capabilities for multi-cloud and hybrid-cloud environments.
For enterprises working on complex applications or highly variable workloads, GitLab can handle
huge quantities of data while maintaining pipeline performance.

Hybrid Cloud Models and Multi-Cloud Deployments

As CI/CD automation evolves, hybrid and multi-cloud models will replace future CI/CD automation.
Terraform's advantage of being able to deploy resources across various cloud platforms will be more
important as organizations try to drive into their infrastructure costs and avoid vendor lock-in. For
businesses, it provides integration with platforms such as AWS, Azure, and Google Cloud that enables
the deployment of applications across multiple clouds using the best features of any provider. In
future years, Terraform will probably have more sophisticated multi-cloud features to make
deployments and application management easier across disparate cloud environments.

Public Private Public Cloud
Cloud — Cloud
Workloads Independent
workloads

1\
Independent II Independent
workloads workloads

Traditional IT]
™ oo [Public Application oubi
—> - «— ublic
Workloadsi.: :._.Workloads Cloud Cloud
e
HYBRID CLOUD u MULTI-CLOUD

Figure 14: Key Comparisons between Multi-Cloud and Hybrid Cloud

With such an elegant combination of GitLab Cl/CD and Terraform's propagated outstanding multi-
cloud capabilities, organizations can reduce the cost of deploying complex platform deployments.

| 25 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

Spreading workloads in different providers will help minimize cloud dependency and improve
business continuity. In addition, organizations will have fault tolerance and disaster recovery, as they
can deploy backups and applications to at least two different locations simultaneously.

Security Automation and Compliance

Automated security measures will become increasingly important as pirated threats evolve.
Terraform offers a solid foundation of automation over infrastructure by securing it with code. In this
area, future trends will focus on tighter integrations between Terraform and security tools such as
HashiCorp Vault, AWS Secrets Manager, and others for more natural and effective management of
sensitive data and credentials in the pipeline.

GitLab CI/CD will improve its security automation. In the future, there are chances of Al-driven
security monitoring that monitors vulnerabilities or suspicious activities on the go in real-time. As
more people use GitLab, their deployments must meet GDPR, HIPAA, and PCI-DSS regulatory
standards (Nagy, 2019). Incorporating compliance checks within the pipeline allows organizations to
automate and ensure regulatory requirements are met to minimize the chances of human error and
expedite deployment.

Al and Machine Learning in Pipeline Optimization

CI/CD pipelines integrating Al and ML will be one of the biggest trends in the next three years. As
such, Al and ML can be used to automate tasks in the entire pipeline, such as error detection,
deployment planning, and resource allocation, to optimize efficiency. For example, Al can study data
from previous deployments and anticipate glitches before they happen. This capability to predict can
massively cut downtime and improve the overall system state of the entire deployment process.

It can also be combined with machine learning algorithms to optimize the deployment process. For
instance, Terraform may leverage Al to predict the best infrastructure setups given historical
performance data and real-time deployment adjustments to match demand. With Al, continuous
monitoring on GitLab will become more powerful by identifying the parts of the pipeline that need
improving and making changes to the pipeline steps to be more mechanically efficient.

The Role of Edge Computing in CI/CD

With the rise of edge computing, CI/CD pipeline automation will face new challenges and
opportunities. The CI/CD pipelines will have to change to enable deployments on a large number of
edge devices in order to respond to the growing need for real-time processing with reduced latency.
This will make deploying applications closer to the edge easy for users, and Terraform's flexibility will
enable developers to define their edge-specific edge-specific infrastructure requirements in laC.
GitLab will also evolve into supporting edge computing so developers can manage how it is deployed
and scaled across distributed edge devices (Sabella et al., 2019). It will empower organizations to
meet the requirements of real-time applications, such as those utilized in loT, Augmented reality
(AR), and self-ruling systems, which need low hold time responses and continue to be updated.

| 26 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

Cloud Layer Cloud Internet
+*Big data processing Server
»Data warehousing 4
r’ : \1
& i
s H kS
s’ 1 .
Edge Layer ¥ H W LAN/WAN
« Data processing & Reduction
« Data caching & buffering Edge Node!Server] [Edge Nodef'Server] [Edge Node/Server
*Control response 7 3 Y
» Virtualization / ! \
i : '\
J E "\
¥ * Y
—_ - - —
. oy il
Device Layer lj [~~~ ‘h e

« Sensors & Controllers

Figure 15: An Overview of Edge Computing

The automation of moving towards CI/CD pipeline automation in the future with Terraform and
GitLab promises significant growth across scalability, security automation, multi-cloud management,
and the combination of Al and ML. With larger, more complex infrastructures on the horizon, these
tools will develop to meet the needs of better, larger distributed systems to make deployments more
efficient and secure. Being at the leading edge of these developments helps organizations prepare
for the emergent challenges of software delivery in the modern world to remain competitive in the
digital age.

CONCLUSION

This paper concludes that CI/CD pipelines can be automated with Terraform and GitLab to experience
its transformative effect. If they are plumbed together well, the tools allow organizations to shrink
their infrastructure and deployment workflows. The paper touches on how shell scripts can create
and provision Terraform environments from processes within the GitLab Cl/CD environment, thereby
greatly increasing software deployment scalability, efficiency, and security. This integration solves
problems common to organizations, including infrastructure management difficulties, scalability
issues, and manual errors, which are known pitfalls in deploying applications. Terraform uses laC
principles to automate the provisioning of cloud infrastructure in a declarative manner through
configuration files. This, in turn, supports scalable solutions in CI/CD pipelines. The GitLab CI/CD
platform that supports DevOps on a single platform automates the software delivery lifecycle from
code compilation to testing and deployment. These two tools can be integrated seamlessly to
manage infrastructure and application deployments with consistent and repeatable results for
deployments on different environments. Through real-world examples, the paper has demonstrated
significant improvement in deployment speed and reliability when this integration is done. In
particular, the framework was implemented, and it decreased the infrastructure provisioning time
by 55%, increased deployment reliability by 70%, and reduced manual intervention requirements by
85%.

The paper shows that with Terraform and GitLab, CI/CD provisioning and pipeline management can
be automated, and the costs will also be reduced significantly. The study implemented a system that
decreased computing resource expenses by 40%. The reason behind this is the ability of dynamic
resource allocation in Terraform to load resources dynamically depending upon the real-time
demand of the workload. Due to this dynamic scaling, neither underutilization nor over-provisioning
of resources are present, and both cost and performance are optimized. This study also further
identifies key best practices for effective CI/CD pipeline management. They include a modular
pipeline design, secure state and secret management, caching and parallelization, immutable

| 27 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis

COLOMBO SCIENTIFIC PUBLISHING

infrastructure and monitoring, and a rollback mechanism. These best practices are implemented for
safety, good maintenance, and scalability of the CI/CD pipeline to avoid the risk of configuration drift
or human error. Modular design in the pipeline helps improve the flexibility and reusability of pipeline
components and simplifies the maintenance of consistency between different projects and
environments.

Integration of Terraform and GitLab CI/CD has plenty of benefits, but the paper acknowledges the
hurdles encountered while implementing it. Our primary challenges revolve around managing the
state of infrastructure across multiple environments and dealing with the complexity of growing out
our pipeline dependencies. To overcome these issues, the paper proposes state management from
remote states, state locking, and the use of modular pipeline templates to make scaling smoother
and pipelines more manageable. The paper further predicts a lower cost of scalability, security, and
automation in CI/CD processes in the future. In the latter days, emerging technologies like Al and ML
will assist in developing pipeline performance optimization and predicting deployment issues and
overall efficiency. Multi-cloud and hybrid cloud models will also increase with organizations
becoming flexible and resilient with deployment strategies. Terraform’s ClI/CD automation with
GitLab (and the GitLab CI/CD offer) is an excellent way for organizations to fabricate scalability,
efficiency, and security of software deployment workflows. This integration helps organizations meet
modern software development and delivery requirements by reducing manual effort, deploying
faster, and optimizing resource usage. With the evolution of these tools, these organizations will be
more empowered to adapt and change to new technological conditions.

REFERENCES

1. Arcangeli, J. P., Boujbel, R., & Leriche, S. (2015). Automatic deployment of distributed software
systems: Definitions and state of the art. Journal of Systems and Software, 103, 198-218.

2. Bansal, A. (2015). Energy conservation in mobile ad hoc networks using energy-efficient scheme
and magnetic resonance. Journal of Networking, 3(Special Issue), 15.
https://doi.org/10.11648/j.net.s.2015030301.15

3. Bansal, A. (2020). System to redact personal identified entities (PIl) in unstructured data.
International Journal of Advanced Research in Engineering and Technology, 11(6), 133.
https://doi.org/10.34218/1JARET.11.6.133

4. Bellec, P., Lavoie-Courchesne, S., Dickinson, P., Lerch, J. P., Zijdenbos, A. P., & Evans, A. C. (2012).
The pipeline system for Octave and Matlab (PSOM): a lightweight scripting framework and
execution engine for scientific workflows. Frontiers in neuroinformatics, 6, 7.

5. Bondarenko, K. I. (2020). System of continuous software development using cloud technologies.
https://dspace.nau.edu.ua/bitstream/NAU/47662/1/%D0%A4%D0%9A%D0%IA%D0%IF%D0%86

123 2020 %D0%91%D0%BE%D0%BD%D0%B4%D0%B0%D1%80%D0%B5%D0%BD%D0%BA%D0O
%BE%20%D0%9A.%D0%86.pdf

6. Caldeira, K., Caravan, G., Govindasamy, B., Grossman, A., Hyde, R., Ishikawa, M., ... & Wood, L.
(1999). Long-range weather prediction and prevention of climate catastrophes: A status
report (No. UCRL-JC-135414; YN0100000). Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

7. Chinamanagonda, S. (2019). Automating Infrastructure with Infrastructure as Code (1aC). Available
at SSRN 4986767.

8. Danielecki, D. M. (2019). Security first approach in development of single-page application based
on angular (Master's thesis, University of Twente).

9. Eiriksson, O. (2016). Developing an OpenStack Public Cloud Storage (Doctoral dissertation)

10. Eze, J. (2017). Development of a Framework for Integrated Oil and gas Pipeline Monitoring and
Incident Mitigation System (IOPMIMS).

11. Gill, A. (2018). Developing a real-time electronic funds transfer system for credit unions.
International Journal of Advanced Research in Engineering and Technology (IJARET), 9(1), 162—-184.
https://iaeme.com/Home/issue/IJARET?Volume=9&Issue=1

12. Kantsev, V. (2017). Implementing DevOps on AWS. Packt Publishing Ltd.

| 28 https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis
https://doi.org/10.11648/j.net.s.2015030301.15
https://dspace.nau.edu.ua/bitstream/NAU/47662/1/%D0%A4%D0%9A%D0%9A%D0%9F%D0%86_123_2020_%D0%91%D0%BE%D0%BD%D0%B4%D0%B0%D1%80%D0%B5%D0%BD%D0%BA%D0%BE%20%D0%9A.%D0%86.pdf
https://dspace.nau.edu.ua/bitstream/NAU/47662/1/%D0%A4%D0%9A%D0%9A%D0%9F%D0%86_123_2020_%D0%91%D0%BE%D0%BD%D0%B4%D0%B0%D1%80%D0%B5%D0%BD%D0%BA%D0%BE%20%D0%9A.%D0%86.pdf
https://dspace.nau.edu.ua/bitstream/NAU/47662/1/%D0%A4%D0%9A%D0%9A%D0%9F%D0%86_123_2020_%D0%91%D0%BE%D0%BD%D0%B4%D0%B0%D1%80%D0%B5%D0%BD%D0%BA%D0%BE%20%D0%9A.%D0%86.pdf
https://iaeme.com/Home/issue/IJARET?Volume=9&Issue=1

COLOMBO SCIENTIFIC PUBLISHING

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.
29.

30.

31.

32.

33.
34.

35.

Kumar, A. (2019). The convergence of predictive analytics in driving business intelligence and
enhancing DevOps efficiency. International Journal of Computational Engineering and
Management, 6(6), 118-142. https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-
PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-
EFFICIENCY.pdf

Maduranga, H. (2020). State-of-the-Art Cryptographic Protocols and Their Efficacy in Mitigating E-
Commerce Data Breaches on Public Clouds. Journal of Computational Intelligence for Hybrid Cloud
and Edge Computing Networks, 4(10), 1-11.

Manvi, S. S., & Shyam, G. K. (2014). Resource management for Infrastructure as a Service (laaS) in
cloud computing: A survey. Journal of network and computer applications, 41, 424-440.

Mao, M., & Humphrey, M. (2011, November). Auto-scaling to minimize cost and meet application
deadlines in cloud workflows. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (pp. 1-12).

Mendez Ayerbe, T. (2020). Design and development of a framework to enhance the portability of
cloud-based applications through model-driven engineering.

Mohammed, I. A. (2011). A Comprehensive Study Of The A Road Map For Improving Devops
Operations In Software Organizations. International Journal of Current Science (IJCSPUB) www.
ijespub. org, ISSN, 2250-1770.

Muhlbauer, W. K. (2004). Pipeline risk management manual: ideas, techniques, and resources. Gulf
Professional Publishing.

Muresan, A. (2020). Tokenization Techniques and Their Effect on Risk Reduction for Payment Data
in Serverless E-Commerce Frameworks. Nuvern Applied Science Reviews, 4(1), 1-12.

Nagy, M. (2019). Secure and usable services in opportunistic networks.
https://aaltodoc.aalto.fi/bitstreams/286a0e04-b1f7-405c-a697-e9c2466d6db7/download

Naziris, S. (2019). Infrastructure as code: towards dynamic and programmable IT systems (Master's
thesis, University of Twente).

Nyati, S. (2018). Revolutionizing LTL carrier operations: A comprehensive analysis of an algorithm-
driven pickup and delivery dispatching solution. International Journal of Science and Research
(JSR), 7(2), 1659-1666. https://www.ijsr.net/getabstract.php?paperid=SR24203183637

Nyati, S. (2018). Transforming telematics in fleet management: Innovations in asset tracking,
efficiency, and communication. International Journal of Science and Research (lJSR), 7(10), 1804—
1810. https://www.ijsr.net/getabstract.php?paperid=SR24203184230

Pesola, J. (2016). Implementing Continuous Integration in a Small Company: A Case Study.

Raj, P., Raman, A,, Raj, P., & Raman, A. (2018). Automated multi-cloud operations and container
orchestration. Software-Defined Cloud Centers: Operational and Management Technologies and
Tools, 185-218.

Rangan, R. M., Rohde, S. M., Peak, R., Chadha, B., & Bliznakov, P. (2005). Streamlining product
lifecycle processes: a survey of product lifecycle management implementations, directions, and
challenges.

Rejstrom, K. (2016). Implementing continuous integration in a small company: A case study.
Rodero-Merino, L., Vaquero, L. M., Gil, V., Galdn, F., Fontdan, J., Montero, R. S., & Llorente, I. M.
(2010). From infrastructure delivery to service management in clouds. Future Generation
Computer Systems, 26(8), 1226-1240.

Roloff, E., Diener, M., Carissimi, A., & Navaux, P. O. (2012, December). High performance
computing in the cloud: Deployment, performance and cost efficiency. In 4th IEEE International
Conference on Cloud Computing Technology and Science Proceedings (pp. 371-378). IEEE.

Sabella, D., Sukhomlinov, V., Trang, L., Kekki, S., Paglierani, P., Rossbach, R., ... & Hadad, S. (2019).
Developing software for multi-access edge computing. ETSI white paper, 20(2019), 1-38.

Schuh, M., Fuhrmann, P., Millar, P., & Mkrtchyan, T. (2019, March). Building a scalable, interactive
and event-driven computing platform in multi-cloud environments with dCache. In International
Symposium on Grids & Clouds 2019 (p. 7).

Shirinkin, K. (2017). Getting Started with Terraform. Packt Publishing Ltd.

Sonninen, 0. (2020). Perceived benefits of declarative software deployment: an exploratory case
study.

Trover, C. A. (2009). Martian Modules: Design of a Programmable Martian Settlement.

https://scientiamreearch.org/index.php/ijcsis

https://scientiamreearch.org/index.php/ijcsis
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://aaltodoc.aalto.fi/bitstreams/286a0e04-b1f7-405c-a697-e9c2466d6db7/download
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://www.ijsr.net/getabstract.php?paperid=SR24203184230

