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Abstract: Modern manufacturing environments are characterized by increasing complexity and
reliance on sophisticated digital systems, particularly Manufacturing Execution Systems (MES) [1]. The
seamless and secure update of MES software is critical to maintaining operational efficiency,
enhancing security, and introducing new functionalities without disrupting production [14].
Traditional update strategies often involve significant downtime or introduce risks to tightly integrated
industrial processes [11, 15]. This article proposes an adaptive, hybrid deployment strategy for
software updates to the MES layer, leveraging concepts from cloud computing, edge computing, and
robust deployment methodologies. The proposed framework aims to minimize disruption, enhance
system resilience, and ensure data integrity during update cycles in complex industrial settings.
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INTRODUCTION

The advent of Industry 4.0 has ushered in an era of unprecedented transformation within the
manufacturing sector, fundamentally reshaping traditional production paradigms. At the core of this
revolution lies the pervasive integration of digital technologies, smart automation, and interconnected
systems, all aimed at optimizing efficiency, fostering agility, and enabling highly customized production
[2, 7]. Within this evolving landscape, Manufacturing Execution Systems (MES) have emerged as
indispensable components, serving as the crucial operational bridge between high-level enterprise
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planning and the intricate realities of the shop floor [1, 7]. These sophisticated systems are tasked with a
multitude of responsibilities, including real-time production monitoring, resource tracking, quality
management, and the collection of granular operational data, all of which are vital for informed decision-
making and continuous process optimization [14].

The dynamic nature of modern manufacturing, driven by rapid technological advancements, evolving
market demands, and the imperative for enhanced security, necessitates the continuous evolution and
updating of MES software. These updates are not merely incremental improvements but are essential for
integrating new functionalities, patching security vulnerabilities, ensuring compliance with regulatory
standards, and generally enhancing the system's overall capabilities [12, 13]. However, the process of
updating software within complex industrial environments presents a unique set of formidable challenges
that distinguish it from conventional IT software deployments.

Unlike typical enterprise applications, MES operates within a tightly interwoven ecosystem where every
component is interdependent. Any disruption, even a brief one, can cascade through the entire
production chain, leading to significant financial losses, prolonged production delays, and, in critical
sectors, potential safety hazards [11, 15]. Traditional "big bang" update methodologies, which involve
taking entire systems offline for extended periods, are often deemed impractical, excessively risky, or
simply unfeasible in a 24/7 operational environment. Furthermore, the contemporary manufacturing
landscape is increasingly characterized by distributed architectures, incorporating a myriad of edge
devices, loT sensors, and cloud-integrated services [3, 4, 5]. This distributed complexity adds considerable
layers to software deployment, demanding sophisticated strategies that can manage updates across
heterogeneous devices and network conditions.

The pressing need for robust, efficient, and secure software update mechanisms specifically tailored for
industrial systems has been a recurring theme in recent research [17, 18, 19, 20]. While existing solutions
have addressed aspects such as security enhancements or minimizing downtime in general IT contexts
[17, 18, 20, 22], a comprehensive, holistic approach that specifically addresses the unique constraints and
stringent requirements of MES remains a critical area for further exploration. This gap highlights the
necessity for a framework that not only minimizes disruption but also ensures data integrity, enhances
system resilience, and supports the continuous evolution of manufacturing processes.

This article introduces a novel adaptive software update framework designed explicitly for the MES layer,
employing a sophisticated hybrid deployment strategy. This strategy meticulously combines and leverages
the strengths of various established and innovative deployment patterns, including blue-green
deployments [22, 27], canary releases [23], and principles drawn from rapid application development
(RAD) [29]. By integrating these diverse approaches, the framework aims to provide an exceptionally
flexible and robust solution capable of navigating the complexities inherent in modern industrial
environments. The overarching objectives of this research are to minimize operational downtime, ensure
the utmost data consistency throughout update cycles, and facilitate the seamless integration of new
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functionalities, all while systematically mitigating the inherent risks associated with software updates in
production-critical systems.

METHODS

The proposed adaptive software update framework for Manufacturing Execution Systems (MES) is
meticulously constructed upon a hybrid deployment strategy, integrating a synergistic combination of
well-established and cutting-edge methodologies. The fundamental premise of this approach is to
engineer a highly flexible and inherently resilient update process that can be precisely tailored to the
distinct characteristics of individual MES modules and, critically, to the varying levels of operational
criticality within the manufacturing processes they govern. This section elaborates on the architectural
considerations, the specific hybrid deployment strategies employed, the orchestration and automation
mechanisms, and the crucial security and resilience measures integrated into the framework.

2.1 Architectural Considerations: Navigating the Industrial Hierarchy

The framework is designed with a profound understanding of the hierarchical structure intrinsic to
complex industrial systems, a structure often formalized by industry standards such as ISA-95 [1]. This
standard delineates five distinct levels of enterprise and control system integration, each with specific
responsibilities and interdependencies.

o Level 0: Process Control & Devices: This foundational layer encompasses the physical process and
instrumentation, including sensors, actuators, and basic control devices.

o Level 1: Basic Control: This level involves Programmable Logic Controllers (PLCs) and other
controllers directly interacting with Level 0 devices to execute basic control functions.

o Level 2: Supervisory Control: This layer includes Supervisory Control and Data Acquisition (SCADA)
systems and Human-Machine Interfaces (HMIs), providing real-time monitoring and control over Level 1
operations.

o Level 3: Manufacturing Operations Management (MES): As the central focus of this research, MES
resides at this critical juncture. It bridges the gap between the real-time control of the shop floor (Levels
0-2) and the broader business planning functions (Level 4). MES responsibilities include production
scheduling, resource management, quality control, maintenance management, and performance analysis

[7].

. Level 4: Enterprise Resource Planning (ERP): This highest layer encompasses business planning
and logistics, including supply chain management, financial management, and customer relationship
management [8].
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The strategic positioning of MES at Level 3 necessitates an update strategy that meticulously considers
dependencies across these interconnected levels. An update at the MES layer can have ripple effects,
potentially impacting operations at lower control levels or requiring synchronization with higher-level ERP
systems [11, 15]. To facilitate distributed and agile updates across this hierarchy, the framework
judiciously incorporates elements of cloud-integrated cyber-physical systems and edge computing [2, 3,
5, 6]. Edge computing, in particular, offers localized processing and data storage closer to the source,
reducing latency and network load, which is crucial for real-time industrial operations [4, 5]. Given the
pervasive integration of Internet of Things (loT) devices within modern industrial systems, the framework
also explicitly addresses the unique requirements for updating software on these often resource-
constrained and widely distributed nodes [14, 20, 34]. This includes considerations for limited processing
power, memory, and intermittent network connectivity.

2.2 Hybrid Deployment Strategies: A Multi-faceted Approach

The proposed hybrid deployment strategy is a cornerstone of this framework, meticulously integrating a
selection of key approaches to ensure flexibility, resilience, and minimal disruption during software
updates. This multi-faceted strategy allows for tailored deployment based on the specific module,
criticality, and infrastructure.

o Blue-Green Deployment: The Foundation for Near-Zero Downtime

This strategy is fundamental to minimizing downtime and involves maintaining two identical production
environments, conventionally labeled "Blue" and "Green" [22]. At any given moment, only one
environment is active and serving live production traffic (e.g., "Blue"). When a new software version is
ready for deployment, it is meticulously deployed to the inactive environment (e.g., "Green"). This inactive
environment undergoes rigorous testing and validation to ensure its stability, functionality, and
compatibility with existing systems. Once the "Green" environment is fully verified and deemed
production-ready, live traffic is seamlessly and almost instantaneously switched from the "Blue" to the
"Green" environment. This rapid cutover minimizes downtime to mere seconds or milliseconds, making it
highly suitable for critical MES operations where continuous availability is paramount [27]. In the context
of MES, implementing this strategy often necessitates redundant hardware and software instances,
ensuring that a fully operational fallback environment is always available. Rajkovi¢ et al. have previously
highlighted the significant benefits of such hybrid software deployment strategies in complex industrial
systems [10]. The blue-green approach also simplifies rollbacks; if any unforeseen issues arise in the newly
active "Green" environment, traffic can be immediately reverted to the stable "Blue" environment
without further deployment.

. Canary Release: Phased Rollouts for Risk Mitigation

Building upon the blue-green concept, the canary release strategy introduces the new software version
to a small, carefully selected subset of users or a limited segment of the production environment before
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a full-scale rollout [23]. This phased approach allows for real-world testing and meticulous monitoring of
the updated system's performance, stability, and user acceptance under live conditions, but with a
contained impact. For MES, this could involve deploying the update to a specific, non-critical production
line, a single workstation, or a particular module. If any issues or anomalies are detected during this
limited exposure, the update can be quickly rolled back, preventing widespread disruption. This strategy
is particularly valuable for validating new features or significant changes in a controlled manner, providing
crucial feedback before committing to a broader deployment. The PDF highlights the use of sentinel nodes
in canary deployments, where a dedicated node or group receives the update first for comprehensive
validation [23].

o Rolling Updates: Gradual Transition for Large-Scale Systems

Also referred to as incremental or phased rollouts, this strategy involves updating instances of the
application one by one or in small, manageable batches [30]. The old version is gradually replaced by the
new one across the system. This approach is particularly applicable for large-scale MES deployments with
multiple servers or client instances. While it maintains service availability throughout the update process,
it can be inherently slower than blue-green deployments as it involves sequential updates. Careful
management of version compatibility is crucial during rolling updates to ensure that different versions of
the software can coexist and interact seamlessly during the transition period. The PDF notes that while
rolling deployment has low downtime, the total time for the upgrade can be considerable depending on
the number of servers/nodes [30].

o Rapid Application Development (RAD) Principles: Agile Iteration for Responsiveness

While not a deployment strategy in itself, the integration of Rapid Application Development (RAD)
principles significantly enhances the agility and responsiveness of the update process [29]. RAD
emphasizes iterative development, rapid prototyping, and continuous feedback loops. Applying RAD
principles to software updates means breaking down large, monolithic updates into smaller, more
manageable increments. This allows for more frequent, less disruptive deployments and enables rapid
responses to emerging needs, unforeseen issues, or changes in operational requirements. This approach
aligns seamlessly with modern agile methodologies and continuous integration/continuous delivery
(CI/CD) practices, fostering a culture of continuous improvement and quick adaptation within the
manufacturing environment. The PDF emphasizes that RAD allows for almost immediate integration and
continuous testing, enabling quick identification and resolution of errors [29].

. A/B Testing: Data-Driven Feature Validation

The framework also incorporates A/B testing, particularly relevant for MES clients with graphical user
interfaces or specific functionalities that benefit from user feedback [25, 26]. This strategy involves
presenting different versions of a feature (Option A vs. Option B) to distinct user groups and then analyzing
their performance, usability, and impact on key metrics [25]. In an MES context, this allows for the
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evaluation of new user interfaces, workflow improvements, or reporting functionalities in a controlled
production environment, enabling data-driven decisions on which version to fully roll out. The PDF
highlights that A/B testing is widely popular with container technologies like Kubernetes, as it involves
end-users in decision-making [30]. This approach can be facilitated through feature flags, allowing specific
functionalities to be toggled on or off for designated user groups.

2.3 Update Orchestration and Automation: Streamlining Complexity

To effectively manage the inherent complexity of hybrid deployments within dynamic industrial settings,
the framework places a strong emphasis on robust orchestration and comprehensive automation.

o Automated Deployment Pipelines: The cornerstone of efficient updates is the implementation of
fully automated deployment pipelines. These pipelines manage the entire update lifecycle, from the initial
code commit and build processes through automated testing, staging, and finally, deployment to
production environments [21]. Automation significantly reduces the potential for human error,
accelerates the update process, and ensures consistency across deployments. The PDF notes the utility of
scripts in this context [31].

o Centralized Configuration Management: Ensuring consistent and accurate configurations across
all MES instances and environments is paramount for successful and predictable updates. The framework
advocates for centralized configuration management systems that prevent "configuration drift" — where
configurations diverge across different instances — and simplify troubleshooting. This ensures that all
updated components operate with the correct parameters and integrate seamlessly.

o Real-time Monitoring and Automated Rollback Mechanisms: Continuous, real-time monitoring of
system performance, health metrics, and key operational indicators is essential throughout and after the
update process. This includes tracking CPU utilization, memory consumption, network traffic, application
errors, and process completion rates. The framework incorporates sophisticated monitoring tools capable
of detecting anomalies or failures promptly. Crucially, automated rollback capabilities are paramount; in
the event of a detected issue, the system can automatically revert to the previous stable version,
minimizing the impact of problematic deployments [12, 24]. This includes robust error logging and analysis
systems to facilitate rapid identification of the root cause of any issues.

. Version Control and Dependency Management: Strict version control for all software
components, configuration files, and related assets is vital. This ensures a clear audit trail of changes and
enables precise identification of software versions. Furthermore, a comprehensive understanding and
meticulous management of dependencies between different MES modules, external services, and
underlying infrastructure components are critical to prevent compatibility issues during updates [21].
Tools for dependency mapping and automated dependency checks are integrated to preempt potential
conflicts.
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2.4 Security and Resilience Considerations: Safeguarding Critical Operations

Given the mission-critical nature of MES in industrial operations, the framework integrates robust security
and resilience measures throughout the update lifecycle.

. Secure Software Supply Chain: Ensuring the integrity and authenticity of software updates from
their development origins through to their final deployment is a non-negotiable requirement [18]. This
involves implementing digital signatures for all software packages, utilizing secure communication
channels for transmission, and employing cryptographic hashes to verify content integrity. The goal is to
prevent tampering or unauthorized injection of malicious code at any point in the supply chain [17].

o Edge Layer Security: MES components operating at the edge of the network (e.g., on shop floor
devices or loT gateways) are often more exposed and vulnerable to both physical and cyber threats [4,
16]. The framework emphasizes implementing strong security measures at this layer, including device
authentication, secure boot mechanisms, intrusion detection systems, and network segmentation to
isolate critical operational technology (OT) networks from broader IT networks.

. Disaster Recovery and Backup: Comprehensive backup and recovery plans are indispensable to
mitigate the impact of failed updates, catastrophic system failures, or other unforeseen events [24]. This
includes regular data backups, off-site storage, and clearly defined recovery procedures to restore
systems to a known good state quickly. The framework integrates backup strategies, including local and
shared backups, to ensure data availability and system restorability [24].

o Resource Awareness: Industrial systems, particularly 10T nodes, often operate under significant
resource constraints (e.g., limited processing power, memory, battery life, and network bandwidth) [9,
34]. The update process must be designed with acute resource awareness to ensure that updates do not
overload the network, deplete device batteries, or degrade the performance of running components. This
involves optimizing update package sizes, scheduling updates during off-peak hours, and utilizing efficient
data transfer protocols. The PDF highlights that resource awareness is crucial to avoid reducing the
execution of running components significantly [13, 14].

o Mitigating Domino Effects: In complex industrial systems, a failure in one component or layer can
trigger a cascade of failures across interconnected systems —a phenomenon known as the "domino effect"
[11, 15]. The framework designs updates to be isolated as much as possible, using buffering mechanisms
and phased rollouts to contain potential issues within a limited scope, thereby preventing widespread
operational disruption [11].

RESULTS

The implementation of an adaptive software update framework, meticulously utilizing a hybrid
deployment strategy for Manufacturing Execution Systems (MES), yields a multitude of significant
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benefits. These advantages are specifically tailored to overcome the inherent limitations and challenges
posed by traditional update approaches within the highly complex and critical industrial environments of
today.

3.1 Minimized Downtime and Enhanced Operational Continuity

One of the most profound impacts of the proposed framework is the dramatic reduction, and in many
scenarios, the complete elimination, of downtime during MES software updates. This is achieved through
the strategic combination of blue-green deployment and rolling updates [10, 22, 23, 30]. Blue-green
deployments, in particular, facilitate near-instantaneous cutovers, ensuring the continuous operation of
the production facility. This involves preparing a fully updated, identical "green" environment while the
"blue" environment remains active, then switching traffic seamlessly once the "green" is validated. For
larger, more intricate MES deployments that cannot be fully duplicated due to scale or cost, rolling
updates or canary releases applied to specific modules or production lines enable gradual, phased
transitions. This prevents a complete shutdown, allowing parts of the system to remain operational while
others are updated. The PDF highlights that this approach reduces downtime from seconds to milliseconds
for loT nodes, representing a reduction of less than one percent [Table 3, PDF]. This capability is absolutely
critical for industries where even minimal interruptions can translate into substantial financial losses,
missed production targets, and severe operational inefficiencies.

3.2 Improved System Reliability and Reduced Risk

The inherent design of the hybrid approach significantly enhances overall system reliability and
substantially mitigates risks associated with software changes. The ability to rigorously test new software
versions in an isolated, non-production environment (via blue-green deployment) or with a carefully
controlled, limited scope (via canary release) before a full rollout drastically reduces the probability of
introducing critical bugs, performance regressions, or unforeseen incompatibilities into the live
production environment [23]. Automated testing, integrated throughout the deployment pipeline,
coupled with continuous, real-time monitoring of system health and performance metrics during and after
updates, enables the early detection of any anomalies or failures. Crucially, the framework incorporates
automated rollback capabilities, allowing for immediate reversion to a previously stable and proven
version if issues are detected [12, 24]. This proactive and reactive risk mitigation is paramount in safety-
critical industrial settings, where software failures can have severe operational, financial, and even human
safety consequences [11, 15]. The PDF indicates that rollbacks with unsuccessful deployments are reduced
significantly (e.g., from 8% of nodes to just 1 for IoT level) [Table 3, PDF].

3.3 Accelerated Feature Delivery and Agility

By embracing the principles of Rapid Application Development (RAD) and leveraging highly automated
deployment pipelines, the framework facilitates more frequent, smaller, and less disruptive updates [29].
This agile approach empowers manufacturers to rapidly integrate new functionalities, adapt swiftly to
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evolving business requirements, and respond dynamically to emerging market opportunities or regulatory
changes [25, 26]. The capability to deploy updates with minimal operational disruption fosters a more
agile and responsive approach to MES development and maintenance. This continuous delivery model
leads to ongoing improvement, innovation, and enhanced competitiveness within the manufacturing
process, allowing businesses to stay ahead in a fast-paced industrial landscape.

3.4 Enhanced Security Posture

A streamlined, automated, and well-managed update process is instrumental in ensuring that critical
security patches and vulnerability fixes can be deployed quickly, consistently, and reliably across the entire
MES landscape [17, 18, 19]. This significantly reduces the window of opportunity for cyber threats and
strengthens the overall security posture of the manufacturing environment [4, 6]. The framework places
a strong emphasis on maintaining a secure software supply chain, incorporating integrity checks, digital
signatures, and secure transmission protocols to prevent malicious code injection or tampering during the
update process [18]. The PDF highlights that security checks on upload are reduced to only one (to the
backup node), streamlining the process [Table 3, PDF].

3.5 Scalability and Adaptability for Diverse Industrial Settings

The modular and flexible nature of the hybrid strategy allows for its effective adaptation across a wide
spectrum of industrial contexts, ranging from small and medium-sized enterprises (SMEs) with limited
resources to large-scale, geographically distributed manufacturing operations. The framework is designed
to seamlessly accommodate the integration of cloud-based services and edge computing resources, which
are becoming increasingly prevalent in modern industrial systems [2, 3, 5, 32]. This inherent adaptability
ensures that the benefits of the framework — including reduced downtime, improved reliability, and
enhanced agility — can be realized across diverse manufacturing environments, regardless of their specific
scale, complexity, or technological infrastructure.

3.6 Integrated Update Mechanism for MES Nodes

A key result of this research is the integration of a dedicated software update mechanism directly into the
MES solution architecture. The MES architecture, as exploited in the examined environments, is based on
a Service-Oriented Architecture (SOA) with multiple services. To avoid server bottlenecks and centralize
control, the framework introduces an independent Update Node (or update service) [PDF, Section 6].

. Role of the Update Node: This dedicated service is responsible for orchestrating server and client
updates across the MES layer. Ideally, it runs on an independent node, ensuring that the update process
itself does not strain the main MES execution services. It manages the order of updates, handles data
buffers during transitions, and oversees sentinel/backup nodes.
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o Centralized Control: The Update Node monitors and switches different feature flags and A/B
functionality variants on and off. This single point of control makes the entire update system fully
manageable and maintainable, regardless of the underlying technology.

. Digital Twin Synchronization: A significant advantage is the possibility of connecting the Update
Node to a digital twin in the cloud [PDF, Section 6]. This enables fully controllable over-the-air deployment,
remote monitoring of configurations, and synchronization of production changes with the digital twin for
continuous testing and analysis. This allows for proactive error detection and validation before changes
impact the live environment.

. Network Load Distribution: By offloading the update distribution responsibility to a dedicated
Update Node and leveraging sentinel/backup nodes, the framework significantly reduces network traffic
peaks on the main MES servers. Instead of the main server performing numerous uploads, the Update
Node distributes to a few sentinel nodes, which then propagate updates within their groups [Table 4,
Table 5, PDF].

3.7 Update Node Routines: The Operational Core

The operational core of the update mechanism is managed through a set of interconnected routines and
classes, ensuring a structured and reliable update process.

o UpdateStatusinfo: This class stores essential information about each client's software version and
application name. This data is periodically sent to the MES or Update Service via "ping messages" [PDF,
Section 6.1].

o ActivityTable: This component maintains activity tables that track the status and versions of all
clients, regularly synchronizing this information with the digital twin environment.

o DeploymentHelper: This component handles configuration updates, especially when applications
revert to older versions or when timed updates necessitate actions for remaining clients. It resides on the
server side, possessing the necessary permissions for file modification.

o DeploymentDispatcher: This is the central component responsible for the entire update process
on a single node level. It can be configured to actively ping the server for new versions or passively await
update notifications. Once a new version is identified, it initiates the update process via the
UpdateDirector [PDF, Fig. 11].

. UpdateDirector: This component runs in a background thread, gathering necessary configurations
and binaries from the Update Node to form the new client version. It then triggers subsequent steps,
including backing up the previous version and performing the blue-green switch. In a sentinel node
configuration, this functionality propagates the installation to other nodes within its group. After a
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successful update, version information is pushed back to the Update Node and digital twin for
synchronization.

. Feature Flag Support: The DeploymentDispatcher supports both complete client updates and
partial functionality enablement/disablement using feature flags. This allows for dynamic activation or
deactivation of new features post-deployment, providing flexibility and a rapid rollback mechanism for
specific functionalities if problems arise.

. Active vs. Passive Modes: Clients can operate in active mode, periodically checking for updates,
or passive mode, where the server notifies them of available updates. A combination of both modes can
be configured, for instance, active checking for new client versions and passive pushing of configuration
updates from the server [PDF, Section 6.1].

o Download and Verification: The DownloadUpdates method retrieves update files (either beta or
regular) from specified paths. Updates are not applied until fully downloaded locally, mitigating issues
from network interruptions.

3.8 Testing Environment and Validation

The effectiveness of the proposed framework was rigorously validated within a sophisticated digital twin
environment. This environment was meticulously designed to mimic a real-world industrial facade
carpentry facility, combining elements of both laboratory setup and cloud infrastructure to simulate
diverse connectivity scenarios and evaluate worst-case conditions regarding latency and execution [PDF,
Section 4].

o Simulated Conditions: The digital twin's emulated hardware was configured to operate at the
lowest acceptable resource levels, intentionally simulating more challenging execution conditions than
typically found in a production environment. This stress-testing approach ensures the robustness of the
update strategy.

o Demo Factory: A plant producing doors and windows served as the demo factory, chosen for its
combination of serial and one-of-a-kind production processes, requiring integration of various sensors,
precise mechanical units, MES clients, and ERP software [32, 33].

. Layered Simulation: The digital twin accurately reflected the ISA-95 model, with simulated layers:

o loT Level: Consisted of 100 nodes connected to simulated sensors and actuators, each with
varying numbers of devices (from a few to 1,000). Memory space per device was limited (1-5 MB), and
connections varied from cable to slow LoRaWAN (10-20 kbps), creating a highly dynamic and challenging
environment for updates.
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o} Edge Level: Comprised 10 Raspberry Pi-like nodes, each collecting data from 10 loT nodes,
connected via wireless networks (around 20 Mbps). These nodes act as intermediaries between shop floor
and higher levels.

o MES and ERP Levels: Simulated with 200 MES clients connected to 4 MES servers (load-balancing
and redundant) and 30 ERP clients connected to a Microsoft Dynamics server. Clients at this level are
larger (hundreds of MBs) and operate over gigabit networks.

. MES Client Diversity: The test environment included different types of MES clients
(Administrative, Operation, Configuration, Management, Measurement), each with distinct
functionalities and connections to various levels (ERP, Edge, |oT, external cloud services) [PDF, Table 2].
This diversity allowed for comprehensive testing of the hybrid deployment strategy across varied
operational roles.

o Buffer Implementation: The test environment included an "execution buffer" for operation
clients, allowing them to continue running and collecting data even when the MES server is offline during
an update. This buffer ensures minimal impact on client operations during server-side upgrades.

3.9 Transition and Adaptation from loT to MES

The framework's evolution involved adapting deployment strategies initially proven effective at the loT
level to the more complex MES layer.

o loT Node Update: For single IoT nodes, a semaphore-based blue-green approach was chosen,
allowing devices to store at least two software versions simultaneously. Challenges included low
bandwidth and battery levels, addressed by specific solutions [34]. The concept involves replacing an
inactive older version with a new one while the current version runs, then seamlessly switching. Data loss
during switchover is minimized by message queues and sleep modes for loT nodes [PDF, Fig. 6, Fig. 7].

. MES Adaptation: While MES clients have more resources, similar problems arise due to business
requirements and operational complexities.

o Storage Issues: Although MES clients have more space, issues can arise if installer privileges
prevent the deletion of older versions, leading to space exhaustion, especially with large log files.

o Bandwidth Bottlenecks: Distributing hundreds of MBs to 200 MES clients from a single point can
create network bottlenecks, similar to low-bandwidth loT scenarios.

o Switchover Complexity: MES clients are larger, with complex GUIs and integrations across multiple
ISA-95 layers (Edge, SCADA, |oT). A proper switchover requires re-establishing connections to numerous
instances, making buffering systems even more critical than for loT nodes [PDF, Fig. 8].
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. Partial Updates and Rollbacks: The blue-green setup supports both full and partial version
updates. Partial updates are faster and reduce network load, especially for more complex software
components. The blue-green approach also proves invaluable during failed updates, offering an effortless
way to revert to the previous stable version without additional data traffic.

. Limitations of Blue-Green for MES: The PDF identifies scenarios where blue-green might be
insufficient for MES:

o Incomplete dependencies in partial updates.

o New version size exceeding available space even after old version deletion.

o Changes in service interfaces or buffer service updates, requiring planned downtime.

o Power loss during updates (less common for MES, but still a consideration for battery-powered

devices like tablets/laptops).
3.10 Software Update for Devices with Limited Storage Space

To address scenarios with limited storage (more prevalent in 10T but also relevant for MES clients with
strict IT security policies prohibiting old version retention), the framework introduces the concept of an
additional device: a backup node or sentinel client [PDF, Section 5.2].

o Backup Node Role: This device, typically with larger storage, acts as a repository for storing backup
versions. In 1oT networks with multiple similar nodes, this is a justifiable cost.

. Sentinel Client Role (MES): For MES clients, a selected node acts as a "sentinel client," responsible
for distributing update packages to its designated group. This draws inspiration from canary deployment.

o Deployment Process: The new version is first transferred to the backup/sentinel node. Once
verified, this node disseminates the update to other devices in its group. While this might slightly extend
overall downtime (as the target node must halt, acquire, and initiate the new version), the sentinel
approach minimizes downtime for the broader group.

. Rollback Efficiency: A key advantage is during rollbacks. If an error is detected at the sentinel level,
the rollback sequence is confined to that sentinel device, preventing the erroneous update from
propagating to the rest of the group. This significantly reduces the impact of failed deployments.

3.11 Software Update in Edge Layer Affecting loT and MES Nodes

Updates at the Edge level can significantly impact connected loT and MES nodes. The framework
addresses this through the strategic implementation of message queues (e.g., MQTT) between layers
[PDF, Fig. 9, Fig. 10].
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. Buffer Insulation: Message queues act as buffers, insulating layers from each other's update
downtimes. Incoming messages to the Edge layer are queued and processed once the Edge becomes
operational again. Similarly, outgoing messages from the Edge are buffered until Edge components are
back online.

o Alarm Management: If buffers become full or connections cannot be re-established, alarms are
raised. However, for MES devices, while some functionalities connected to the Edge might temporarily
stop, most other operations can continue. IoT nodes are more vulnerable without buffers, as
disconnection leads to high alarm states and potential data loss.

. Reconnection Sequence: The framework details the reconnection sequence between loT, Edge,
and MES nodes, often involving MQTT brokers and clients at different levels.

o Data Loss Mitigation: While message queues significantly reduce data loss, potential issues (e.g.,
unrecognizable message types due to protocol changes) are acknowledged. The framework aims to stop
producers if connections fail and manage version compatibility for message formats.

. Inter-layer Independence: The use of message queues is crucial for maintaining operational
continuity across layers. If a communication protocol changes, only the synchronization buffer might need
an update, allowing other layers to continue functioning without interruption.

DISCUSSION

The proposed adaptive software update framework for Manufacturing Execution Systems (MES),
underpinned by a sophisticated hybrid deployment strategy, represents a substantial leap forward
compared to conventional update methodologies in complex industrial environments. The fundamental
strength of this approach lies in its inherent flexibility and its capacity to seamlessly integrate diverse
deployment patterns. This allows for a highly customized update process that can be precisely matched
to the specific operational needs, criticality levels, and technological characteristics of individual MES
modules and the broader manufacturing processes they govern.

4.1 Advantages of the Hybrid Approach

The framework offers compelling advantages that directly address the pain points of industrial software
updates:

. Rapid Recovery from Errors: As highlighted in the PDF, the hybrid approach, particularly with
sentinel nodes, significantly reduces recovery time if a deployment error is detected. Often, a rollback is
only required on a single sentinel node, rather than across numerous devices, minimizing disruption [PDF,
Section 7.2].
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. Flexible Feature Management: The integration of feature flags, dark mode, and A/B testing
provides unparalleled flexibility. Manufacturers can run multiple versions of a functionality concurrently,
gradually enable new features, or even allow customers to choose between different solutions, all in a
controlled environment. This facilitates continuous improvement and rapid innovation based on real-
world feedback.

. Enhanced Control and Visibility: The concept of an independent Update Node, especially when
integrated with a digital twin in the cloud, offers a single point of control and comprehensive visibility over
the entire update process. This enables remote management, configuration monitoring, and proactive
error detection, ensuring that the production environment remains aligned with desired states.

o Optimized Network Load: By distributing update packages through sentinel/backup nodes rather
than directly from a central server to every client, the framework effectively mitigates network traffic
hotspots. This prevents bottlenecks and ensures that network resources are not overwhelmed during
update cycles, which is crucial for maintaining real-time industrial communications.

. Reduced Downtime: The core benefit, consistently demonstrated, is the dramatic reduction in
downtime. By leveraging blue-green cutovers and buffered operations, the time required for system
restarts is minimized to seconds or milliseconds, a fraction of what traditional methods entail [PDF, Table
3, Table 4].

4.2 Challenges and Implementation Considerations

While the benefits are substantial, the successful implementation of this sophisticated framework
necessitates careful consideration of several critical factors:

o Initial Infrastructure Investment: Establishing the necessary infrastructure for strategies like blue-
green deployments (e.g., redundant hardware, parallel network configurations) can entail a significant
upfront investment. However, this cost is often justified by the long-term gains in operational continuity,
reliability, and agility.

o Complexity of Automation and Orchestration: The effective management of a hybrid deployment
strategy demands robust automation and orchestration tools. Developing comprehensive automated
testing suites is paramount to ensure the quality and stability of new software versions before they are
rolled out to production. Without adequate automation, the potential benefits of minimized downtime
and reduced risk could be undermined by increased operational overhead and manual errors.

. Organizational Change Management: Shifting from infrequent, large-scale updates to more
frequent, smaller deployments requires a profound cultural change within the organization. Strong
collaboration between IT, operations, and development teams is essential. Clear communication,
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comprehensive training, and stakeholder buy-in are crucial to ensure that all personnel understand and
embrace the new update paradigm.

. Compatibility Concerns: The update process must meticulously address compatibility issues
across diverse system configurations. As noted in the PDF, transitioning to different platform versions
(e.g., Windows application development platforms) can introduce incompatibilities with existing
components like OPC servers, or upgrading database servers might disrupt connectivity until drivers are
updated. Altering data structures in message queues also poses a risk of data loss for existing records
[PDF, Section 7.2]. Comprehensive testing in a dedicated test environment or digital twin is advocated to
preempt these issues.

o Data Migration Intricacies: Updates often involve changes to data structures or schemas,
necessitating complex data migration procedures. Prudent planning and rigorous testing of these
migration processes are essential to minimize complications and ensure data integrity.

. System Stability: Maintaining overall system stability throughout the update process is
paramount. This involves careful sequencing of updates, dependency management, and robust error
handling to prevent cascading failures.

. User Adoption: Successful user adoption hinges on effective communication and targeted training
to elucidate the benefits of updates and familiarize users with new features. Soliciting feedback from users
both before and after updates, potentially through A/B testing techniques, facilitates the identification
and resolution of any emerging usability issues [PDF, Section 7.2].

o Software Design Requirements: The applicability of the proposed update mechanisms is
contingent on the underlying software architecture. As the PDF points out, if the software lacks properly
exposed extension and configuration classes, implementing features like feature flags or A/B testing
becomes challenging or impossible. While blue-green and canary deployments can be implemented with
dedicated teams and hardware, a deeper integration requires specific software adaptations [PDF, Section
7.2]. The evolution of MES software from fixed configuration files to dynamic, run-time configurable
systems was a necessary prerequisite for fully supporting these advanced deployment strategies.

4.3 Future Research Directions
The research opens several promising avenues for future exploration:

. Al-Driven Update Optimization: Developing more sophisticated Al-driven tools capable of
predicting potential issues during updates, leveraging machine learning to optimize deployment strategies
based on real-time system performance data, and even autonomously managing rollbacks.

. Advanced Computing Paradigms: Exploring the application of emerging computing paradigms
such as serverless computing and osmotic computing in MES environments [28, 27]. These could further
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enhance the agility, scalability, and resource efficiency of software updates by dynamically allocating
resources and adapting to changing workloads.

. Integration with Product Family Modeling: Further integrating the principles of product family
modeling and resource awareness in complex industrial systems [9, 33] to refine update strategies. This
could enable more intelligent and resource-optimized updates for highly configurable MES solutions.

o Edge Level Enhancements: Extending efforts to the Edge level to devise more effective solutions
for mitigating the impact of buffering and inter-level communication system modifications during
updates. This includes optimizing data flow and ensuring robust connectivity in challenging edge
environments.

o Blockchain for Update Integrity: Investigating the use of blockchain technology to enhance the
immutability and auditability of software update logs and configurations, further strengthening the secure
software supply chain.

CONCLUSION

Having accumulated over a decade and a half of intensive experience with industrial systems, our research
team has navigated a diverse array of projects encompassing software development across all ISA-95
levels. The inherent challenges in development have consistently varied, influenced by unique user
requirements, the intricate technical complexity of industrial processes, and stringent performance
expectations. Crucially, all these disparate software instances must operate in perfect harmony, forming
a reliable and resilient backbone for the industrial facility. A universal challenge across all software
components, regardless of their level, is the process of system updates. Typically, a system at any given
level comprises a server and dozens, or even hundreds, of interconnected clients. The imperative for
updates is to execute them as swiftly as possible, with minimal resource consumption, and without
creating bottlenecks that could disrupt the facility's operations.

The findings of this research significantly advance the formulation of deployment strategies specifically
tailored for intricate, layered industrial software systems. When deploying software updates in such
environments, several common and persistent challenges inevitably arise, including the critical issue of
downtime, the potential for increased network traffic, and the efficient utilization of storage space. At the
lower echelons of the industrial hierarchy, such as the loT layer, energy consumption during the
deployment process also warrants careful consideration, adding another layer of complexity.

To directly address the challenge of limited storage space, particularly prevalent in resource-constrained
loT nodes, our framework introduces the concept of additional backup nodes into the system. While these
backup nodes may exhibit a slightly larger volume compared to regular loT nodes, this trade-off is deemed
entirely acceptable given the substantial positive outcomes achieved. Notably, the total downtime
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experienced during updates has been dramatically reduced—from a duration measured in seconds to
mere milliseconds—representing an astonishing reduction of less than one percent of the initial duration.

The adaptive approach initially developed and successfully applied to lIoT nodes [9] has been meticulously
refined and robustly extended to the Enterprise Resource Planning (ERP) [10] and Manufacturing
Execution System (MES) levels. This refinement has involved improving the defined hybrid deployment
mode, leading to consistent and positive findings across all levels. The adaptability of this approach also
emphasizes the potential for incorporating novel features and deployment strategies, making the update
process for ERP and MES clients significantly more user-friendly and fostering higher rates of user
acceptance.

We have devised a comprehensive hybrid strategy that synergistically combines elements from blue-
green deployment, canary releases, and dark mode functionalities with feature flags, A/B testing, and
enhanced standard deployment practices. This sophisticated strategy is further bolstered by the
implementation of an inter-layer buffer and the strategic inclusion of specific nodes: a dedicated update
node on the server side, complemented by backup and sentinel nodes on the client side. By implementing
this integrated approach, we have effectively curtailed overall downtime, reducing the duration required
for system restart to a period almost imperceptible, proximate only to the actual switchover. Remarkably,
this reduction translates to less than 10% of the time typically consumed by classic deployment methods.
The most profound improvement is observed in scenarios involving erroneous deployments, where errors
can be swiftly tracked down and halted at the very first sentinel node, preventing widespread
propagation.

With the backup/sentinel node actively engaged, we have successfully reduced the number of software
uploads required in the event of an erroneous update to the time needed for just two switchovers of a
single node. If chosen correctly, the initial sentinel node provides an adequate test environment for
immediate error detection. Unlike the approach for ERP clients, where updates were released to all
sentinel nodes simultaneously, the strategy for MES clients involves sending the update to a single
sentinel, which then manages the deployment within its designated group. In the worst-case scenario,
only the targeted group needs to be reverted, and this rollback is confined within the group, eliminating
the need for interaction with the central server or the update node.

The transformative changes in the deployment process applied to MES nodes are primarily driven by the
imperatives of the Industry 4.0 paradigm and the stringent requirements it imposes. MES and Industry 4.0
are collectively revolutionizing manufacturing practices by digitizing and imbuing processes with
intelligence, thereby empowering organizations to cater to individual customer requirements with
unprecedented precision and achieve operational excellence. In essence, MES and Industry 4.0 are
fundamentally reshaping manufacturing by integrating advanced technologies and data-driven systems
to forge a more interconnected, efficient, and responsive production environment.
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Enhancing the efficiency of the software update process stands as a pivotal element within an optimized
production environment. The overarching objective is to facilitate software updates beyond traditionally
scheduled maintenance windows, enabling continuous improvement. Leveraging the proposed hybrid
deployment method, seamless layer-wide updates become feasible, particularly when interactions with
other levels remain unchanged, thanks to buffering and intelligent orchestration. Notably, this approach
significantly truncates downtime—from hours and minutes to mere seconds and milliseconds.
Furthermore, our future trajectory involves extending our efforts to the Edge level. This strategic
expansion aims to devise solutions that more effectively mitigate the impact of buffering and inter-level
communication system modifications, ensuring robust and resilient operations across the entire industrial
digital landscape.
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