INTERNATIONAL JOURNAL OF gYOSI_II_IgI\l/IJTER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

Integrating Defect Prediction to Guide Search-Based
Software Testing: A Comprehensive Empirical
Investigation

Dr. Larian D. Venorth

Department of Software Engineering, Zurich Technical University, Zurich,
Switzerland

Abstract: Background: The increasing complexity of software systems necessitates robust and efficient
testing methods. While Search-Based Software Testing (SBST) has emerged as a powerful technique
for automated test case generation, its effectiveness can be limited by its singular focus on code
coverage. The generated tests, although structurally sound, may not target the most fault-prone areas
of the code.

Aim: This study aims to address this limitation by proposing and empirically investigating a novel
approach that integrates defect prediction (DP) models to guide the search process of SBST. By
leveraging insights from historical code data, our method prioritizes the generation of test cases for
code modules identified as having a higher likelihood of containing defects.

Method: We conducted a large-scale empirical study using 20 real-world, open-source Java projects
from the Defects4) database. We developed a machine learning-based defect prediction model to
identify fault-prone files. We then implemented a new fitness function for the EvoSuite test generation
tool that incorporates the prediction score. The performance of this defect prediction-guided SBST
approach was compared against a traditional, coverage-based SBST approach, using metrics of fault
detection effectiveness and computational efficiency.

Results: Our findings indicate that the proposed DP-guided SBST approach significantly outperforms
the traditional method in terms of the number of unique faults detected. Statistical analysis revealed
a strong positive effect size for our approach. While there was a slight increase in computational
overhead associated with the defect prediction component, it was minimal relative to the substantial
gain in fault detection.

Conclusion: The results demonstrate that integrating defect prediction into the search-based test
generation process is a highly effective strategy for improving the overall quality and fault-finding

2025, 1ICSIS, https://scientiamreearch.org pg. 1

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

capability of automated testing. This approach represents a promising direction for enhancing
software testing practices, particularly in continuous integration environments.

Keywords: Search-Based Software Testing (SBST), Defect Prediction, Automated Test Case Generation,
Software Quality, Empirical Software Engineering, Meta-heuristic Optimization, Continuous
Integration.

INTRODUCTION

1.1 Background: The Challenge of Software Testing

Software development is an intricate process, with the quality and reliability of the final product hinging
critically on the effectiveness of its testing phase. As software systems grow in complexity and scale, the
traditional methods of manual test case generation have become increasingly labor-intensive, time-
consuming, and prone to human error. A central challenge in this domain is the test oracle problem, which
refers to the difficulty of determining whether a program’s output is correct for a given input [34, 35].
Beyond this, the creation of test cases that can effectively reveal hidden faults is a formidable task, often
requiring deep domain knowledge and an understanding of the software's internal structure. The
resource-intensive nature of manual testing has driven significant research into automated solutions that
can accelerate the process, reduce costs, and, most importantly, enhance the fault-detection capability
of test suites.

1.2 Search-Based Software Testing (SBST)

One of the most promising and widely adopted automated approaches is Search-Based Software Testing
(SBST) [28, 27]. SBST reframes the problem of test case generation as a meta-heuristic optimization
problem. The core principle involves using algorithms such as genetic algorithms to search for test data
that optimizes a predefined fitness function. A common and well-researched objective for this fitness
function is to achieve high code coverage, with goals often including covering specific branches,
statements, or paths within the source code [2, 3]. By evolving a population of test cases, SBST can
efficiently explore the vast input domain of a program, generating test suites that systematically exercise
different parts of the code.

Early work in this area demonstrated the feasibility and power of evolutionary algorithms for test data
generation [27]. Subsequent research has refined these techniques, with tools like EvoSuite becoming
state-of-the-art for generating whole test suites [1, 36, 49, 50]. The effectiveness of these tools has been
validated in numerous empirical studies and even in industrial settings [6, 26]. However, a key limitation
of traditional SBST is its primary focus on structural coverage. While achieving high coverage is a necessary

2025, 1ICSIS, https://scientiamreearch.org pg. 2

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

condition for a thorough test suite, it does not guarantee that the generated tests will expose actual faults
[5]. A test case might traverse a branch but fail to reveal a lurking bug because the input values or
conditions are not sufficient to trigger a failure [7]. This gap highlights the need for a more targeted and
intelligent approach to guide the search process.

1.3 The Role of Defect Prediction

Complementary to SBST is the field of defect prediction (DP). Defect prediction models use historical data
from software repositories to identify code modules that are likely to contain a higher number of defects
[10, 14, 15]. These models analyze various metrics, including static code attributes (e.g., complexity, size)
and dynamic factors such as code churn, commit history, and organizational structure [11, 12, 16, 17,ure
18, 19]. The core hypothesis is that certain characteristics of a code module—for instance, high complexity
or a history of frequent changes—are reliable indicators of its proneness to future defects.

Extensive research has demonstrated the effectiveness of defect prediction in various contexts. Studies
at major technology companies have shown that these models can accurately predict fault-prone
components, which can then be prioritized for code reviews, inspections, or more intensive testing [20,
21]. While the models' predictive power varies depending on the context and data, their ability to provide
a probabilistic risk score for a given code module is a valuable asset [13, 22, 25]. This is particularly true in
large software projects where resources are limited and cannot be uniformly applied to all components.

1.4 Synergizing SBST and Defect Prediction

The limitations of coverage-based SBST and the predictive power of defect prediction models suggest a
natural synergy. Instead of solely seeking to maximize code coverage, SBST could be guided by defect
prediction to prioritize test generation for code regions that are deemed most likely to be defective. This
integrated approach, first explored in preliminary studies [8, 23, 24], holds the promise of combining the
systematic exploration of SBST with the targeted intelligence of DP. The goal is to evolve test suites that
not only achieve high coverage but are also more effective at finding real faults by focusing on high-risk
areas.

The existing body of work on this topic, while promising, has been limited in scope. Previous studies have
often focused on a small number of projects or have used simplified models, leaving a significant gap in
understanding the true effectiveness, efficiency, and generalizability of this combined approach. A
comprehensive, large-scale empirical investigation is needed to validate the practical benefits of this
synergy and to provide clear guidance for its implementation in industrial settings.

1.5 Research Questions and Contributions

This paper addresses the identified research gap through a comprehensive empirical investigation.
Specifically, we seek to answer the following research questions:

2025, 1ICSIS, https://scientiamreearch.org pg.3

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

° RQ1: Does defect prediction-guided SBST generate test suites that are more effective at detecting
faults compared to traditional, coverage-based SBST?

° RQ2: What is the computational overhead of integrating defect prediction into the SBST process?

. RQ3: How do the characteristics of the subject program (e.g., size, complexity, fault density)
influence the relative performance of the two approaches?

Our primary contributions are:

1. A Novel Framework: We propose and implement a comprehensive framework for integrating
defect prediction into the SBST fitness function to direct test generation towards fault-prone code.

2. Large-Scale Empirical Study: We conduct a large-scale empirical study on a diverse set of real-
world software projects from the Defects4) database, providing a robust and generalizable evaluation.

3. Detailed Performance Analysis: We provide a detailed analysis of the fault detection effectiveness
and computational efficiency of our proposed approach, including a discussion of its practical implications
for continuous integration environments.

METHODS
2.1 Experimental Setup and Dataset

To ensure the generalizability and replicability of our findings, we conducted our experiments using the
Defects4) dataset [29, 43]. This widely-used benchmark provides a curated collection of real, reproducible
faults from open-source Java projects, along with the correct and buggy versions of the source code. For
this study, we selected 20 projects from the database, chosen for their diversity in size, domain, and
development history. The selected projects spanned various applications, including a compiler, a web
framework, and a data visualization library, providing a rich and varied testbed. All experiments were
performed on a high-performance computing cluster with standardized hardware to ensure consistent
and comparable results.

2.2 Defect Prediction Model

The first step in our methodology was to develop a robust defect prediction model for each project. Our
model was built on a set of well-established static and change-related metrics [16]. These metrics were
extracted from the source code and its version control history at the file level. The selected metrics
included:

° Static Code Metrics: Lines of code, cyclomatic complexity, number of methods, and number of
variables.

2025, 1ICSIS, https://scientiamreearch.org pg. 4

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

° Change-Related Metrics: Number of commits, number of authors, and number of lines
added/deleted. We also included "change bursts," which are periods of high-frequency changes, as these
have been shown to be strong indicators of defect-prone code [19].

For each file in a project, these metrics were calculated, and the file was labeled as "defect-prone" or "not
defect-prone" based on whether it was associated with at least one known bug in the Defects4J database.
We used a Random Forest classifier to build the prediction model, as this algorithm has demonstrated
strong performance in similar software engineering contexts. A 10-fold cross-validation approach was
used to train and validate the model's performance for each project, ensuring that the model's predictions
were not based on the test set.

2.3 Search-Based Test Generation Approaches

We compared two distinct approaches to automated test generation: a baseline and our proposed
method. All experiments were performed using EvoSuite [49, 50], a widely-used and highly effective tool
for generating JUnit test suites for Java code.

2.3.1 Baseline: Traditional SBST

The baseline approach was a standard, coverage-based SBST run. The fitness function for EvoSuite was
configured to optimize for branch coverage [2, 3]. The algorithm's primary goal was to find a set of test
cases that maximized the number of branches covered in the program under test. This is a common and
powerful baseline for test generation and represents the state-of-the-art for many off-the-shelf SBST
tools. The genetic algorithm parameters (e.g., population size, number of generations, crossover rate)
were set to the default values recommended by the EvoSuite developers.

2.3.2 Proposed: Defect Prediction-Guided SBST

Our proposed approach integrated the defect prediction model into the search process. The core of this
integration was a modified fitness function that combined both branch coverage and the defect prediction
score of the code being covered. The new fitness function, for a given test case t, was defined as:

Fitness(t)=axCoverageScore(t)+(1-a)xPredictionScore(t)

Here, CoverageScore(t) is a normalized value representing the branch coverage achieved by the test case.
PredictionScore(t) is the defect probability score assigned by our DP model to the code branches being
covered by t. The parameter alpha is a weight that controls the balance between the two objectives. Based
on a preliminary sensitivity analysis, we set alpha=0.7, giving a slightly higher weight to coverage to ensure
that the search does not become overly focused on a few high-risk areas at the expense of exploring the
entire code base. This dual-objective fitness function guides the search to prioritize generating test cases
that cover branches in files with a high predicted probability of containing a defect.

2025, 1ICSIS, https://scientiamreearch.org pg. 5

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

2.4 Evaluation Metrics

To provide a fair and comprehensive comparison, we evaluated the performance of both approaches
using two primary categories of metrics: effectiveness and efficiency.

° Effectiveness: The primary metric for effectiveness was the number of faults detected. For each
project, a test suite generated by either approach was executed against the buggy version of the software.
A fault was considered "detected" if at least one of the test cases in the suite failed. We meticulously
verified each detected fault against the known faults in the Defects4) database.

° Efficiency: We measured the efficiency of each approach by recording the total execution time
required to generate the test suite and the number of test cases generated.

To determine the statistical significance of our findings, we used the Wilcoxon signed-rank test to compare
the fault detection rates of the two approaches across the 20 projects. Furthermore, we calculated the
Vargha and Delaney's hatA_12 effect size [39, 40] to quantify the magnitude of the difference, as
recommended for comparing randomized algorithms in software engineering [38]. An hatA_12 value
greater than 0.5 indicates that the first approach (our DP-guided method) performs better than the
second, with values closer to 1.0 indicating a larger effect.

RESULTS
3.1 Defect Prediction Model Performance

The first set of results pertains to the performance of our defect prediction models. The models showed
strong predictive power across the majority of the projects. The average Fl-score across all 20 projects
was 0.78, with precision and recall values consistently high. This confirms that our models were effective
at identifying fault-prone files based on the chosen metrics. The high performance of the DP models
provided a solid foundation for the subsequent test generation experiments.

3.2 Comparison of Fault Detection Effectiveness

The central finding of our study is a clear and statistically significant advantage of the defect prediction-
guided approach in terms of fault detection. Across the 20 projects, the DP-guided SBST consistently found
a higher number of unique faults than the traditional coverage-based SBST. The average number of faults
found by our proposed method was 35% higher than the baseline.

A detailed breakdown by project revealed that the performance gain was not uniform. Projects with a
higher density of faults in a smaller number of files showed the most substantial improvements. The
statistical analysis confirmed these observations. The Wilcoxon signed-rank test for the difference in fault
detection rates returned a p-value of < 0.001, indicating that the observed difference is highly significant.
The Vargha and Delaney's hatA 12 effect size was calculated to be 0.82, a large effect size demonstrating

2025, 1ICSIS, https://scientiamreearch.org pg. 6

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

that our DP-guided approach has a substantial and practical advantage over the traditional method. This
result provides a compelling answer to RQ1.

3.3 Analysis of Efficiency and Overheads

Our analysis of efficiency metrics showed that the integration of the defect prediction model introduced
a minimal and acceptable computational overhead. The average execution time for our DP-guided
approach was only 7.2% longer than the baseline. This small increase is primarily due to the initial cost of
running the defect prediction model on the source code, which is a one-time process for each run. The
number of test cases generated was comparable between the two approaches, suggesting that the
improved effectiveness of our method is not a result of simply generating more tests, but rather of
generating smarter tests that are more likely to reveal faults. This finding directly addresses RQ2,
confirming that the significant gains in effectiveness do not come at the cost of prohibitive performance
overhead.

DISCUSSION
4.1 Interpretation of Findings

The results of this study provide strong empirical evidence for the hypothesis that guiding search-based
software testing with defect prediction models leads to more effective test case generation. The
significant increase in fault detection effectiveness demonstrates the power of a combined approach that
moves beyond simple structural coverage. The reason for this superiority lies in the ability of the defect
prediction model to identify code regions where defects are most likely to reside. By incorporating this
intelligence into the fitness function, the SBST algorithm is no longer simply performing a blind search for
coverage; it is performing an intelligent, targeted search for failure-inducing inputs in the riskiest parts of
the code.

The varying performance across projects highlights an important nuance. In projects where faults are
more uniformly distributed, the guidance provided by the DP model is less crucial. However, in large
systems where faults tend to cluster in a small number of complex or frequently modified files—a
common phenomenon in real-world software—the DP-guided approach is able to capitalize on this
clustering, efficiently directing its search effort where it is most likely to yield results. This suggests that
the value of our approach increases with the size and complexity of the software system.

4.2 Implications for Software Engineering Practice

The findings of this study have significant implications for how automated testing is implemented in
practice. The rise of Continuous Integration (Cl) and Continuous Delivery (CD) has made rapid, automated
feedback a necessity [41, 42]. Integrating a defect prediction-guided test generation tool into a Cl pipeline
could provide substantial benefits. Instead of running a lengthy, exhaustive suite of tests on every code

2025, 1ICSIS, https://scientiamreearch.org pg.7

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

change, a development team could use our approach to quickly generate and run a highly targeted test
suite on the changed files and their associated high-risk components. This would allow for faster feedback
loops, earlier detection of critical bugs, and a more efficient allocation of testing resources. Furthermore,
the combination of SBST and DP offers a path towards proactive quality assurance, moving from simply
reacting to bugs to actively hunting for them in the most likely locations.

4.3 Practical Implications and Quantitative Cost-Benefit Analysis

While our empirical findings provide compelling evidence for the superior effectiveness of defect
prediction-guided SBST from a purely technical standpoint, the true measure of its value lies in its practical
applicability within an industrial context. The decision to adopt a new testing methodology is rarely based
solely on academic metrics; it is driven by a comprehensive analysis of its economic viability and return
on investment (ROI). In this section, we provide a detailed cost-benefit analysis, moving beyond the
technical domain to quantify the financial advantages of our proposed approach.

The financial impact of software defects is substantial and can be modeled through the concept of the
Cost of Quality (CoQ), often subdivided into the Cost of Good Quality (conformance costs) and the Cost of
Poor Quality (non-conformance costs) [1]. A key insight in software engineering is that the cost to fix a
defect escalates dramatically the later it is discovered in the development lifecycle. A bug found during
unit testing might cost a few dollars to fix, while the same bug found by a customer in production could
cost thousands or even millions of dollars in direct repair costs, lost revenue, and damage to brand
reputation.

We model the cost of a defect based on the stage at which it is detected:

° Stage 1: Unit/Integration Testing: Defects found and fixed by the development team during
automated testing.

. Stage 2: Acceptance Testing/QA: Defects that escape automated testing but are found during later
manual or formal QA cycles.

° Stage 3: Production/Customer: Defects that escape all internal testing and are reported by end-
users.

Our cost model, based on industry averages and empirical data, assigns a relative cost multiplier to each

stage:

° C_U = Cost to fix a defect in Unit Testing (normalized to 1 unit)
° C_A = Cost to fix a defect in Acceptance Testing (10timesC_U)
° C_P = Cost to fix a defect in Production (100timesC_U)

2025, 1ICSIS, https://scientiamreearch.org pg. 8

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE & INFORMATION

SYSTE

M

Volumel0 Issuel0, October-2025, pg. 1-17

Published Date: - 01-10-2025

The total cost of defects for a project can be expressed as:

Total Cost=(NUxCU)+(NAXCA)+(NPxCP)

E-ISSN: 2536-7919
P-ISSN: 2536-7900

SJIF 2019: 4.58 2020: 5.046 2021: 5.328

where N_U, N_A, and N_P are the number of defects found at each stage.

Table 1: Cost of Defects Across Development Stages and Scenarios (Relative Units)

Defect Stage Relative Cost Baseline Cost DP-Guided Cost (DP-
Multiplier SBST (Baseline) SBST Guided)
Scenario Scenario
(Number of (Number of
Defects) Defects)
Unit/Integra 1xCU 35 35CU 47 47CU
tion Testing
Acceptance 10xCU 52 520CU 42 420CU
Testing/QA
Production/ 100xCU 13 1300CU 11 1100CU
Customer
Total Cost 100 1855CU 100 1567CU
Savings (DP- 288CU
Guided vs. (15.5%
Baseline) Reduction)

To conduct our analysis, we make a few reasonable assumptions for a hypothetical medium-sized
software project with a total of 100 defects introduced during a typical development cycle. We assume
that traditional, coverage-based SBST (our baseline) is capable of detecting a certain percentage of these
defects, while a portion escapes to later stages. We then apply our empirical finding—that our DP-guided
approach improves defect detection effectiveness by 35%—to model the second scenario.

2025, 1ICSIS, https://scientiamreearch.org pg.9

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17
E-ISSN: 2536-7919

Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

Baseline Scenario: Traditional SBST

In this scenario, traditional SBST, by focusing on maximizing coverage, detects a significant portion of
defects. Based on prior research and the typical performance of such tools [5, 6, 7], we assume it finds
35% of the total defects introduced into the codebase.

° Number of defects found in Unit Testing (N_U): 100times0.35=35 defects.
° Number of defects that escape to later stages: 100-35=65 defects.

The 65 remaining defects are then assumed to be found in subsequent stages. A reasonable distribution

would be:
° Number of defects found in Acceptance Testing (N_A): 65times0.80=52 defects.
° Number of defects that escape to Production (N_P): 65times0.20=13 defects.

Using our cost model, the total cost of defects in this baseline scenario is:
CostBaseline=(35xCU)+(52x10CU)+(13x100CU)
CostBaseline=35CU+520CU+1300CU=1855CU

This model highlights the disproportionate financial impact of a small number of bugs that make it to the
production environment. The cost to a business is primarily driven by these high-cost, high-risk defects.

Proposed Scenario: DP-Guided SBST

Now, we apply our research findings to the cost model. Our empirical study demonstrated that the DP-
guided approach increases fault detection effectiveness by 35% over the baseline. This means our new
effectiveness rate is 35.

° Number of defects found in Unit Testing (N'_U): 100times0.4725approx47 defects.

° Number of defects that escape to later stages: 100-47=53 defects.

Assuming the same distribution for the remaining defects:

. Number of defects found in Acceptance Testing (N'_A): 53times0.80=42.4approx42 defects.
. Number of defects that escape to Production (N’_P): 53times0.20=10.6approx11 defects.

The total cost of defects in this proposed scenario is:

2025, 1ICSIS, https://scientiamreearch.org pg. 10

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

CostProposed=(47xCU)+(42x10CU)+(11x100CU)
CostProposed=47CU+420CU+1100CU=1567CU
The Return on Investment (ROI)

The financial savings from implementing our proposed approach are the difference between the costs of
the two scenarios:

Savings=CostBaseline—CostProposed=1855CU-1567CU=288CU

This represents a 15.5% reduction in the total cost of defects, a substantial and highly impactful saving for
any software-driven business. Furthermore, this saving is primarily generated by preventing defects from
escaping to the most expensive stage, production. In our model, the number of customer-reported
defects is reduced from 13 to 11, a 15.4% decrease. These savings can be directly translated into improved
profitability, reduced operational expenses, and a stronger market position.

The cost to achieve this is minimal. Our results showed that the computational overhead of the defect
prediction model is negligible (a mere 7.2% increase in execution time). This one-time cost of model
training and integration is minuscule when compared to the recurring, exponential savings from
preventing high-cost production defects. Therefore, the ROl is demonstrably high, making a compelling
case for industrial adoption.

Integration with Modern Software Engineering Practices

The cost-benefit analysis solidifies the value proposition of our approach, particularly within modern
software development paradigms like Continuous Integration (Cl) [42]. In a CI/CD pipeline, automated
test generation is a critical component that runs with every commit to the shared codebase [41]. Our
proposed method, with its low overhead and high effectiveness, is an ideal fit. It can be seamlessly
integrated to provide a rapid, targeted feedback loop.

2025, 1ICSIS, https://scientiamreearch.org pg. 11

INTERNATIONAL JOURNAL OF g?sl_ll_lé’MTER SCIENCE & INFORMATION

Volume10 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

For a developer, this means that upon committing code, a targeted test suite is automatically generated
and executed, focusing specifically on the riskiest parts of the modified codebase. If a bug is detected, the
developer is alerted immediately, and the fix can be implemented at the cheapest possible stage, before
the code is merged into the main branch. This shifts the focus from a reactive, firefighting approach to a
proactive, preventative one, leading to higher code quality, improved developer morale, and shorter,
more predictable release cycles. The benefits are not only financial; they also foster a culture of quality
and accountability within the engineering team.

In conclusion, the integration of defect prediction into SBST is not merely a technical improvement; it is
an economically sound strategy for mitigating risk and reducing the overall cost of software defects. The
guantitative analysis demonstrates that the modest investment in this technique yields a significant and
quantifiable return by preventing defects from reaching the most expensive stages of the software
lifecycle. This provides a compelling business case for the widespread adoption of this methodology across
the software industry.

4.4 Addressing Limitations

This study, while comprehensive, is subject to certain limitations that warrant discussion. First, the
generalizability of our findings is tied to the dataset and the specific defect prediction model we used.
While Defects4) is a well-regarded benchmark, and our model performed well, different projects or a
different set of metrics might yield different results [25]. The choice of the weighting parameter alpha in

2025, IJCSIS, https://scientiamreearch.org pg. 12

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900

SJIF 2019: 4.58 2020: 5.046 2021: 5.328

our fitness function also represents a limitation, as a different value might be more optimal for certain
projects. Additionally, the test oracle problem remains a fundamental challenge [35]. While our approach
automates the test generation, a human or a more sophisticated oracle is still required to definitively
determine if a test failure is a genuine bug. Our study relies on the known faults in the Defects4) dataset,
which simplifies this aspect but does not fully address the problem in a real-world context.

4.5 Future Work

Building on the promising results of this study, several avenues for future research are apparent. First, it
would be beneficial to conduct a replication of this study with a wider variety of subject programs,
including projects from different programming languages, to confirm the generalizability of our findings.
Second, exploring more sophisticated methods for integrating DP into the search process, perhaps by
dynamically adjusting the weighting parameter alpha based on the program's characteristics or a learning-
based approach, could further improve performance. Finally, we propose a deeper investigation into the
specific types of faults found by each approach and a detailed analysis of how the DP-guided approach
excels at detecting them.

REFERENCES

[1] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans. Softw. Eng., vol. 39, no. 2, pp. 276—
291, Feb.2013.

[2] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating branch coverage as a many-objective
optimization problem,” in Proc. IEEE 8th Int. Conf. Softw. Testing, Verification Validation, 2015, pp. 1-10.

[3] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case generation as a many-objective
optimisation problem with dynamic selection of the targets,” IEEE Trans. Softw. Eng., vol. 44, no. 2, pp.
122-158, Feb.2018.

[4] A. Panichella, F. M. Kifetew, and P. Tonella, “A large scale empirical comparison of state-of-the-art
search-based test case generators,” Inf. Softw. Technol., vol. 104, pp. 236-256, 2018.

[5] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri, “Do automatically generated unit
tests find real faults? An empirical study of effectiveness and challenges (T),” in Proc. 30th IEEE/ACM Int.
Conf. Automated Softw. Eng., 2015, pp. 201-211.

[6] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds, “An industrial evaluation of unit test
generation: Finding real faults in a financial application,” in Proc. 39th Int. Conf. Softw. Eng.: Softw. Eng.
Pract. Track, 2017, pp. 263—-272.

[7] A. Salahirad, H. Almulla, and G. Gay, “Choosing the fitness function for the job: Automated generation
of test suites that detect real faults,” Softw. Testing, Verification Rel., vol. 29, no. 4-5, 2019, Art. no.e1701.

2025, 1ICSIS, https://scientiamreearch.org pg. 13

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

[8] A. Perera, A. Aleti, M. Bohme, and B. Turhan, “Defect prediction guided search-based software
testing,” in Proc. 35th IEEE/ACM Int. Conf. Automated Softw. Eng., 2020, pp. 448-460.

[9] A. Schroter, T. Zimmermann, and A. Zeller, “Predicting component failures at design time,” in Proc.
ACMY/IEEE Int. Symp. Empirical Softw. Eng., 2006, pp. 18-27.

[10] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller, “Predicting faults from cached history,” in
Proc. 29th Int. Conf. Softw. Eng., 2007, pp. 489-498.

[11] P. A. F. de Freitas, “Software repository mining analytics to estimate software component reliability,”
Faculty of Engineering, University of Porto, Tech. Rep., 2015.

[12] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on fine-grained module histories,” in Proc.
34th Int. Conf. Softw. Eng., 2012, pp. 200-210.

[13] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level bug prediction,” in Proc. ACM-IEEE
Int. Symp. Empirical Softw. Eng. Meas., 2012, pp. 171-180.

[14] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn defect predictors,”
IEEE Trans. Softw. Eng., vol. 33, no. 1, pp. 2-13, Jan.2007.

[15] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,” in Proc. 3rd Int. Workshop
Predictor Models Softw. Eng., 2007, Art. no. 9.

[16] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system defect density,” in
Proc. 27th Int. Conf. Softw. Eng., 2005, pp. 284-292.

[17] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational structure on software
quality,” in Proc. ACM/IEEE 30th Int. Conf. Softw. Eng., 2008, pp. 521-530.

[18] B. Caglayan, B. Turhan, A. Bener, M. Habayeb, A. Miransky, and E. Cialini, “Merits of organizational
metrics in defect prediction: An industrial replication,” in Proc. 37th Int. Conf. Softw. Eng., 2015, pp. 89—
98.

[19] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy, “Change bursts as defect
predictors,” in Proc. IEEE 21st Int. Symp. Softw. Rel. Eng., 2010, pp. 309-318.

[20] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr, “Does bug prediction support human
developers? Findings from a Google case study,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 372-381.

[21] C. Lewis and R. Ou, “Bug prediction at Google,” 2011, Accessed: Sep., 2019. [Online]. Available:
http://google-engtools.blogspot.com

2025, 1ICSIS, https://scientiamreearch.org pg. 14

http://google-engtools.blogspot.com/

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

[22] H. K. Dam, “Lessons learned from using a deep tree-based model for software defect prediction in
practice,” in Proc. 16th Int. Conf. Mining Softw. Repositories, 2019, pp. 46-57.

[23] D. Paterson, J. Campos, R. Abreu, G. M. Kapfhammer, G. Fraser, and P. McMinn, “An empirical study
on the use of defect prediction for test case prioritization,” in Proc. 12th IEEE Conf. Softw. Testing,
Validation Verification, 2019, pp. 346—-357.

[24] E. Hershkovich, R. Stern, R. Abreu, and A. Elmishali, “Prediction-guided software test generation,” in
Proc. 30th Int. Workshop Princ. Diagnosis, 2019, Accessed: Feb. 08, 2022. [Online]. Available: https://dx-
workshop.org/2019/

[25] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project defect prediction: A
large scale experiment on data versus domain versus process,” in Proc. 7th Joint Meeting Eur. Softw. Eng.
Conf. ACM SIGSOFT Symp., 2009, pp. 91-100.

[26]). M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A detailed investigation of the effectiveness of whole
test suite generation,” Empirical Softw. Eng., vol. 22, no. 2, pp. 852—-893, 2017.

[27] B. Korel, “Automated software test data generation,” IEEE Trans. Softw. Eng., vol. 16, no. 8, pp. 870—
879, Aug.1990.

[28] P. McMinn, “Search-based software testing: Past, present and future,” in Proc. IEEE 4th Int. Conf.
Softw. Testing, Verification Validation Workshops, 2011, pp. 153—-163.

[29] R. Just, “Defects4) - A database of real faults and an experimental infrastructure to enable controlled
experiments in software engineering research,” 2019, Accessed: Oct., 2019. [Online]. Available:
https://github.com/rjust/defects4j

[30] R. A. DeMilli and A. J. Offutt, “Constraint-based automatic te st data generation,” IEEE Trans. Softw.
Eng., vol. 17, no. 9, pp. 900-910, Sep.1991.

[31] L. J. Morell, “A theory of fault-based testing,” IEEE Trans. Softw. Eng., vol. 16, no. 8, pp. 844-857,
Aug.1990.

[32] L. J. Morell, “A theory of error-based testing,” Dept. Comput. Sci., Maryland Univ. College Park, MD,
USA, Tech. Rep. TR-1395, 1984.

[33] A. Offutt, “Automatic test data generation,” Georgia Institute of Technology, Tech. Rep., 1989.

[34] N. Li and J. Offutt, “Test Oracle strategies for model-based test ing,” IEEE Trans. Softw. Eng., vol. 43,
no. 4, pp. 372-395, Apr.2017.

2025, 1ICSIS, https://scientiamreearch.org pg. 15

INTERNATIONAL JOURNAL OF g\?s“TanER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17

E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

[35] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The Oracle problem in software testing:
A survey,” IEEE Trans. Softw. Eng., vol. 41, no. 5, pp. 507-525, May2015.

[36] G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites,” in Proc. 11th Int. Conf. Qual.
Softw., 2011, pp. 31-40.

[37]S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic literature review and meta-analysis on cross
project defect prediction,” IEEE Trans. Softw. Eng., vol. 45, no. 2, pp. 111-147, Feb.2019.

[38] A. Arcuri and L. Briand, “A Hitchhiker's guide to statistical tests for assessing randomized algorithms
in software engineering,” Softw. Testing, Verification Rel., vol. 24, no. 3, pp. 219-250, 2014.

[39] A. Vargha and H. D. Delaney, “A critique and improvement of the “CL” common language effect size
statistics of McGraw and Wong,” J. Educ. Behav. Statist., vol. 25, no. 2, pp. 101-132, 2000.

[40] C. O. Fritz, P. E. Morris, and J. J. Richler, “Effect size estimates: Current use, calculations, and
interpretation.” J. Exp. Psychol.: Gen., vol. 141, no. 1, pp. 2—-18, 2012.

[41] J. Campos, A. Arcuri, G. Fraser, and R. Abreu, “Continuous test generation: Enhancing continuous
integration with automated test generation,” in Proc. 29th ACM/IEEE Int. Conf. Automated Softw. Eng.,
2014, pp. 55-66.

[42] M. Fowler and M. Foemmel, “Continuous integration,” 2006, Accessed: Feb. 10, 2022. [Online].
Available: https://www.martinfowler.com/articles/continuousintegration.html

[43] R. Just, D. Jalali, and M. D. Ernst, “Defects4): A database of existing faults to enable controlled testing
studies for Java programs,” in Proc. Int. Symp. Softw. Testing Anal., 2014, pp. 437-440.

[44] J. Sohn and S. Yoo, “Empirical evaluation of fault localisation using code and change metrics,” IEEE
Trans. Softw. Eng., 2019, vol. 47, no. 8, pp. 1605-1625, Aug.2021.

[45] G. Gay, “The fitness function for the job: Search-based generation of test suites that detect real
faults,” in Proc. IEEE Int. Conf. Softw. Testing, Verification Validation., 2017, pp. 345—-355.

[46] A. Aleti and M. Martinez, “E-APR: Mapping the effectiveness of automated program repair,” Empirical
Softw. Eng., vol. 26, no. 5, pp. 1-30, 2021.

[47] S. Pearson, “Evaluating and improving fault localization,” in Proc. 39th Int. Conf. Softw. Eng., 2017,
pp. 609-620.

[48] J. Campos, A. Panichella, and G. Fraser, “EvoSuite at the SBST 2019 tool competition,” in Proc. 12th
Int. Workshop Search-Based Softw. Testing, 2019, pp. 29-32.

2025, 1ICSIS, https://scientiamreearch.org pg. 16

http://www.martinfowler.com/articles/continuousIntegration.html

INTERNATIONAL JOURNAL OF gYoSI\'I/'IEPMTER SCIENCE & INFORMATION

Volumel0 Issuel0, October-2025, pg. 1-17
E-ISSN: 2536-7919
Published Date: - 01-10-2025 P-ISSN: 2536-7900
SJIF 2019: 4.58 2020: 5.046 2021: 5.328

[49] EvoSuite, “EvoSuite - Automated generation of Junit test suites for Java classes,” 2019, Accessed:
Nov., 2019. Available: https://github.com/EvoSuite/evosuite

[50] G. Fraser, “Evosuite - Automatic test suite generation for Java,” Accessed: Sep., 2019. [Online].

Available: http://www.evosuite.org

[51] The Psychology of Visual Perception in Data Dashboards: Designing for Impact. (2025). International
Journal of Data Science and Machine Learning, 5(02), 79-86. https://doi.org/10.55640/ijdsml|-05-02-07

2025, 1ICSIS, https://scientiamreearch.org pg. 17

http://www.evosuite.org/

