

Architecting Resilient Digital Transformation in Legacy-Intensive Industries: Integrating Site Reliability Engineering, Sustainability, and Organizational Change

Dr. Elena Marković

University of Zagreb, Croatia

ARTICLE INFO

Article history:

Submission: October 01, 2025

Accepted: October 15, 2025

Published: October 31, 2025

VOLUME: Vol.10 Issue 10 2025

Keywords:

Digital transformation; Site Reliability Engineering; legacy systems; sustainability; organizational resilience; industrial digitalization; operational reliability

ABSTRACT

The accelerating pace of digital transformation has intensified scholarly and managerial attention toward the resilience, sustainability, and reliability of complex socio-technical systems, particularly within legacy-intensive industries such as retail, manufacturing, logistics, energy, and public infrastructure. While digital transformation promises operational agility, data-driven decision-making, and sustainable value creation, its implementation within legacy environments remains fraught with structural rigidity, technical debt, organizational inertia, and heightened operational risk. This research article develops a comprehensive theoretical and empirical synthesis that integrates Site Reliability Engineering (SRE), digital transformation strategy, sustainability imperatives, and organizational change theory into a unified analytical framework. Grounded strictly in the provided literature, the study positions SRE not merely as an operational discipline but as a strategic governance mechanism capable of reconciling reliability, innovation velocity, and sustainability objectives in digitally transforming legacy systems. Particular emphasis is placed on the operationalization of SRE principles within legacy retail infrastructure, drawing extensively on recent empirical insights that demonstrate how reliability engineering practices can be adapted to environments characterized by monolithic architectures, fragmented data ecosystems, and historically siloed organizational structures (Dasari, 2025). Through an interpretive, theory-driven methodological approach, the article synthesizes findings across digital transformation, supply chain management, industrial internet of things, cybersecurity resilience, sustainability transitions, and human capital development. The results reveal that organizations achieving durable digital transformation outcomes are those that embed reliability engineering into strategic planning, align digital investments with sustainability goals, and cultivate digital capabilities across technical and managerial domains. The discussion advances scholarly debates by critically examining tensions between agility and stability, innovation and risk, and short-term performance versus long-term resilience. The article concludes by outlining implications for theory, practice, and policy, and by proposing an agenda for future research on reliability-centered digital transformation in legacy-intensive contexts.

INTRODUCTION

Digital transformation has emerged as one of the most consequential organizational phenomena of the early twenty-first century, reshaping how value is created, delivered, and sustained across industries and sectors. The proliferation of advanced digital technologies—including cloud computing, industrial internet of things (IIoT), artificial intelligence, advanced analytics, and platform-based architectures—has fundamentally altered competitive dynamics and stakeholder expectations, compelling organizations to reconfigure their operational

models and strategic orientations (Hanelt et al., 2021). Yet, despite the abundance of technological opportunities, the empirical record consistently demonstrates that digital transformation initiatives frequently underperform or fail outright, particularly in organizations burdened by complex legacy infrastructures and deeply entrenched organizational routines (Tohânean et al., 2020). This paradox underscores the need for more nuanced theoretical frameworks that move beyond technology-centric explanations and instead foreground reliability, sustainability, and socio-technical alignment as core determinants of digital transformation success (Rosário & Dias, 2022).

Legacy-intensive industries occupy a distinctive position within the digital transformation discourse. Sectors such as retail, manufacturing, energy, transportation, and public services are often characterized by long-lived physical assets, monolithic information systems, and mission-critical operations where downtime carries significant economic, social, and reputational costs (Argyroudis et al., 2022). In such contexts, the imperative to innovate digitally coexists with an equally compelling requirement to ensure operational continuity and system reliability. This duality generates a structural tension: digital transformation initiatives often introduce architectural complexity and operational volatility precisely at the moment when reliability is most essential (Attaran, 2020). The challenge, therefore, is not simply to digitize legacy systems but to do so in a manner that enhances, rather than undermines, organizational resilience and sustainability.

Site Reliability Engineering (SRE) has gained prominence as a potential response to this challenge. Originating within large-scale internet firms, SRE represents a disciplined approach to managing complex systems by applying software engineering principles to operations, with the explicit goal of balancing reliability and innovation velocity (Dasari, 2025). While SRE has been extensively discussed in the context of cloud-native and digitally mature organizations, its relevance to legacy-intensive environments has only recently begun to attract scholarly attention. The adaptation of SRE principles to legacy retail infrastructure, for example, illustrates how reliability engineering can be strategically leveraged to modernize aging systems without compromising service availability or customer experience (Dasari, 2025). This emerging body of work suggests that SRE may serve as a critical integrative mechanism linking digital transformation, sustainability objectives, and organizational change.

Sustainability considerations further complicate the digital transformation landscape. As organizations face increasing pressure to align with sustainable development goals, digital technologies are frequently positioned as enablers of environmental efficiency, resource optimization, and circular economy models (Nayal et al., 2022). However, the sustainability benefits of digital transformation are neither automatic nor evenly distributed. Energy-intensive data infrastructures, electronic waste, and rebound effects can offset anticipated gains, particularly when digital initiatives are implemented without robust governance and reliability frameworks (Du et al., 2023). From this perspective, SRE's emphasis on system efficiency, error reduction, and continuous improvement offers a promising pathway for aligning digital transformation with sustainability imperatives.

The human and organizational dimensions of digital transformation also warrant critical examination. Digital initiatives often demand new skills, roles, and cultural norms, challenging existing professional identities and power structures (Hewapathirana & Almasri, 2021). Research on digital self-efficacy and workplace agility highlights the importance of psychological traits and learning capabilities in shaping individual and organizational responses to technological change (Maran et al., 2022). Yet, many legacy-intensive organizations struggle to cultivate these capabilities at scale, particularly when transformation efforts are perceived as top-down or technologically deterministic. Integrating SRE into organizational routines may help mitigate these challenges by fostering shared responsibility for system performance and by embedding learning into everyday operational practices (Dasari, 2025).

Despite growing scholarly interest, significant gaps remain in the literature. Existing research tends to examine digital transformation, sustainability, and reliability engineering as largely discrete domains, with limited integration across levels of analysis and disciplinary boundaries (Hanelt et al., 2021). Moreover, empirical insights into how SRE can be effectively operationalized within legacy contexts remain scarce, particularly outside of high-technology sectors. This article addresses these gaps by developing a comprehensive,

literature-grounded analysis of SRE as a strategic enabler of sustainable digital transformation in legacy-intensive industries. By synthesizing insights from engineering management, information systems, sustainability studies, and organizational theory, the study advances a more holistic understanding of how reliability-centered approaches can reconcile competing demands for innovation, stability, and long-term value creation.

The remainder of the article proceeds as follows. The methodology section outlines the interpretive, theory-driven approach employed to synthesize and analyze the provided literature. The results section presents a descriptive and analytical account of key themes emerging from the literature, with particular attention to the role of SRE in legacy environments. The discussion section offers an in-depth theoretical interpretation of these findings, situating them within broader scholarly debates and identifying implications for research and practice. The conclusion synthesizes the core contributions of the study and outlines directions for future inquiry.

METHODOLOGY

The methodological approach adopted in this study is interpretive, integrative, and theory-driven, reflecting the complexity and multidimensionality of the research problem. Rather than seeking to test specific hypotheses or generate statistically generalizable findings, the study aims to develop a coherent conceptual synthesis that advances understanding of digital transformation, Site Reliability Engineering, and sustainability within legacy-intensive organizational contexts (Hanelt et al., 2021). This approach is particularly appropriate given the heterogeneity of the phenomena under investigation and the emergent nature of SRE applications outside digitally native firms (Dasari, 2025).

The primary data source for the study consists of the corpus of references provided, encompassing peer-reviewed journal articles, scholarly books, industry reports, and policy-oriented publications. These sources collectively span multiple disciplinary domains, including engineering management, information systems, sustainability science, supply chain management, cybersecurity, organizational behavior, and public sector management (Sarkis & Ibrahim, 2022). By drawing exclusively on this curated body of literature, the study ensures conceptual coherence while enabling a rich, cross-disciplinary dialogue.

The analytical process unfolded in several iterative stages. First, the literature was subjected to close, critical reading to identify core concepts, theoretical perspectives, and empirical insights relevant to digital transformation in legacy contexts. Particular attention was paid to how authors conceptualized reliability, resilience, sustainability, and organizational change, as well as to the assumptions underpinning their analyses (Rosário & Dias, 2022). Second, these concepts were coded and grouped into higher-order themes, such as technological enablers, organizational capabilities, governance mechanisms, and socio-technical tensions. This thematic structuring facilitated the identification of patterns and relationships across otherwise disparate studies (Tohânean et al., 2020).

A distinctive feature of the methodology is the central role accorded to Site Reliability Engineering as an integrative analytical lens. Drawing on recent empirical work on SRE implementation in legacy retail infrastructure, the study treats SRE not merely as a set of technical practices but as a boundary-spanning framework that connects operational reliability with strategic objectives and sustainability outcomes (Dasari, 2025). This interpretive move enables a re-reading of the broader digital transformation literature through the prism of reliability engineering, highlighting dimensions that are often under-theorized or implicitly assumed.

The methodology also incorporates reflexive comparison across sectors and organizational contexts. Insights from industrial IoT, supply chain management, digital marketing, and public infrastructure are juxtaposed to illuminate common challenges and divergent trajectories in digital transformation efforts (Attaran, 2020; Argyroudis et al., 2022). This comparative perspective enhances the analytical depth of the study while avoiding unwarranted generalization.

Several limitations of the methodological approach warrant acknowledgment. The reliance on secondary sources precludes direct empirical validation of the proposed framework, and the interpretive nature of the

analysis introduces an element of subjectivity. However, these limitations are mitigated by the systematic and transparent engagement with the literature, as well as by the triangulation of insights across multiple domains (Hanelt et al., 2021). Moreover, the purpose of the study is not to offer definitive prescriptions but to stimulate scholarly debate and inform future empirical research.

RESULTS

The synthesis of the literature reveals a set of interrelated findings that illuminate the role of Site Reliability Engineering in enabling sustainable digital transformation within legacy-intensive industries. These findings are organized around four overarching themes: the structural constraints of legacy systems, the strategic reconfiguration enabled by digital technologies, the operationalization of reliability through SRE, and the alignment of digital transformation with sustainability objectives (Dasari, 2025; Rosário & Dias, 2022).

First, the literature consistently emphasizes the structural and technical constraints imposed by legacy infrastructures. Legacy systems are often characterized by tightly coupled architectures, limited interoperability, and accumulated technical debt, which collectively inhibit rapid innovation and increase operational risk (Molnar et al., 2013). In retail and supply chain contexts, these constraints manifest as fragmented data flows, inconsistent service levels, and limited visibility across organizational boundaries (Attaran, 2020). Such conditions complicate the adoption of advanced digital technologies and heighten the potential for system failures, underscoring the need for robust reliability frameworks (Dasari, 2025).

Second, digital technologies are shown to enable significant strategic reconfiguration when effectively integrated into organizational processes. Studies on digital transformation highlight how technologies such as cloud computing, analytics, and IIoT can enhance agility, customer engagement, and operational efficiency (Behrendt et al., 2021). However, the results also indicate that technological adoption alone is insufficient. Without corresponding changes in governance, culture, and skill development, digital initiatives risk exacerbating complexity rather than delivering sustainable value (Hewapathirana & Almasri, 2021). This finding reinforces the importance of socio-technical alignment in digital transformation efforts (Hanelt et al., 2021).

Third, the literature points to Site Reliability Engineering as a critical mechanism for operationalizing reliability in digitally transforming environments. Empirical evidence from legacy retail infrastructure demonstrates that SRE practices—such as service-level objectives, error budgets, and automated incident response—can be adapted to stabilize aging systems while enabling incremental modernization (Dasari, 2025). By embedding reliability metrics into decision-making processes, organizations can make explicit trade-offs between innovation velocity and system stability, thereby reducing the risk of disruptive failures (Bochman & Freeman, 2021). This finding suggests that SRE serves not only as an operational tool but also as a form of organizational governance.

Fourth, the results highlight the complex relationship between digital transformation and sustainability outcomes. Digital technologies are frequently associated with improved resource efficiency, enhanced traceability, and reduced environmental impact (Nayal et al., 2022). However, the literature also cautions that these benefits are contingent on how technologies are designed, deployed, and managed (Du et al., 2023). SRE's emphasis on efficiency, continuous improvement, and systemic thinking emerges as a potential enabler of sustainable digital transformation by minimizing waste, optimizing resource utilization, and enhancing system longevity (Orr & Orr, 2014).

Collectively, these findings underscore the centrality of reliability-centered approaches in navigating the complexities of digital transformation within legacy contexts. The results provide a descriptive foundation for the subsequent theoretical interpretation and critical discussion.

DISCUSSION

The findings synthesized in this study invite a deeper theoretical examination of the intersections between digital transformation, Site Reliability Engineering, sustainability, and organizational change. At a conceptual

level, the discussion advances the argument that SRE represents a paradigmatic shift in how organizations conceptualize and manage the risks and opportunities associated with digital transformation in legacy-intensive environments (Dasari, 2025). Rather than treating reliability as a constraint on innovation, SRE reframes it as an enabling condition for sustained digital evolution.

One of the most salient theoretical contributions of this analysis lies in its reconfiguration of the agility–stability dichotomy that has long dominated digital transformation discourse. Traditional perspectives often portray agility and reliability as competing objectives, with increased innovation velocity presumed to undermine system stability (Hanelt et al., 2021). The SRE framework challenges this assumption by introducing explicit mechanisms—such as error budgets—that institutionalize trade-offs and render them governable (Dasari, 2025). From an organizational theory standpoint, this approach aligns with contingency perspectives that emphasize the importance of fit between organizational structures, technologies, and environmental demands (Sankaran et al., 2017).

The discussion also situates SRE within broader debates on sustainability and long-term value creation. While digital transformation is frequently promoted as a pathway to sustainability, critics have highlighted the environmental costs of digital infrastructures and the risk of superficial “greenwashing” initiatives (Du et al., 2023). By foregrounding efficiency, waste reduction, and continuous optimization, SRE offers a more substantive operationalization of sustainability principles within digital systems (Orr & Orr, 2014). This alignment is particularly salient in legacy-intensive industries, where extending the useful life of existing assets can yield significant environmental benefits (Argyroudis et al., 2022).

From a human capital perspective, the integration of SRE into organizational routines has important implications for skill development and professional identity. SRE blurs traditional boundaries between development and operations, fostering a culture of shared responsibility for system performance (Dasari, 2025). This cultural shift resonates with research on boundaryless careers and digital self-efficacy, which emphasizes adaptability, learning orientation, and cross-functional collaboration as critical capabilities in the digital era (Hewapathirana & Almasri, 2021; Maran et al., 2022). However, the discussion also acknowledges potential resistance, particularly in organizations with deeply entrenched hierarchies and role definitions.

The limitations of the current analysis point to several avenues for future research. Empirical studies are needed to examine the long-term sustainability impacts of SRE adoption across different sectors and organizational contexts (Nayal et al., 2022). Comparative research could illuminate how regulatory environments, organizational cultures, and technological maturity levels shape the effectiveness of reliability-centered digital transformation strategies (Uechi, 2019). Additionally, greater attention to ethical and social dimensions—such as labor impacts and digital inclusion—would enrich the scholarly understanding of SRE’s broader implications (Neumeyer et al., 2020).

CONCLUSION

This article has developed a comprehensive, literature-grounded analysis of Site Reliability Engineering as a strategic enabler of sustainable digital transformation in legacy-intensive industries. By synthesizing insights across multiple domains, the study demonstrates that reliability-centered approaches can reconcile the competing demands of innovation, stability, and sustainability. The findings underscore the importance of embedding reliability into organizational governance, aligning digital initiatives with long-term value creation, and cultivating the human capabilities necessary for continuous adaptation. While the analysis is interpretive and theory-driven, it offers a robust foundation for future empirical research and practical experimentation. As organizations continue to navigate the complexities of digital transformation, the integration of SRE principles into legacy contexts holds significant promise for building resilient, sustainable, and adaptive socio-technical systems.

REFERENCES

1. Behrendt, A., De Boer, E., Kasah, T., Koerber, B., Mohr, N., & Richter, G. (2021). Leveraging industrial IoT

and advanced technologies for digital transformation. McKinsey & Company.

2. Dasari, H. (2025). Implementing Site Reliability Engineering (SRE) in legacy retail infrastructure. *The American Journal of Engineering and Technology*, 7(07), 167–179. <https://doi.org/10.37547/tajet/Volume07Issue07-16>
3. Rosário, A. T., & Dias, J. C. (2022). Sustainability and the digital transition: A literature review. *Sustainability*, 14, 4072.
4. Attaran, M. (2020). Digital technology enablers and their implications for supply chain management. *Supply Chain Forum: An International Journal*, 21, 158–172.
5. Hanelt, A., Bohnsack, R., Marz, D., & Antunes Marante, C. (2021). A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change. *Journal of Management Studies*, 58, 1159–1197.
6. Tohănean, D., Buzatu, A. I., Baba, C. A., & Georgescu, B. (2020). Business model innovation through the use of digital technologies: Managing risks and creating sustainability. *Amfiteatru Economic*, 22, 758–774.
7. Hewapathirana, G. I., & Almasri, F. (2021). Talent development challenges and opportunities in the 4th industrial revolution: A boundaryless career theory perspectives. In *Fourth Industrial Revolution and Business Dynamics: Issues and Implications* (pp. 287–320). Palgrave Macmillan.
8. Nayal, K., Kumar, S., Raut, R. D., Queiroz, M. M., Priyadarshinee, P., & Narkhede, B. E. (2022). Supply chain firm performance in circular economy and digital era to achieve sustainable development goals. *Business Strategy and the Environment*, 31, 1058–1073.
9. Argyroudis, S. A., Mitoulis, S. A., Chatzi, E., Baker, J. W., Brilakis, I., Gkoumas, K., Vouzdoukas, M., Hynes, W., Carluccio, S., & Keou, O. (2022). Digital technologies can enhance climate resilience of critical infrastructure. *Climate Risk Management*, 35, 100387.
10. Du, J., Shen, Z., Song, M., & Zhang, L. (2023). Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises. *Energy Economics*, 120, 106572.
11. Maran, T. K., Liegl, S., Davila, A., Moder, S., Kraus, S., & Mahto, R. V. (2022). Who fits into the digital workplace? Mapping digital self-efficacy and agility onto psychological traits. *Technological Forecasting and Social Change*, 175, 121352.
12. Sarkis, J., & Ibrahim, S. (2022). Building knowledge beyond our experience: Integrating sustainable development goals into IJPR's research future. *International Journal of Production Research*, 60, 7301–7318.
13. Bochman, A. A., & Freeman, S. (2021). *Countering cyber sabotage: Introducing consequence-driven, cyber-informed engineering (CCE)*. CRC Press.
14. Orr, L. M., & Orr, D. J. (2014). *Eliminating waste in business: Run lean, boost profitability*. Apress.
15. Molnar, B., Szabo, G., & Benczur, A. (2013). Selection process of ERP systems. *Business Systems Research*, 4, 36–48.
16. Neumeyer, X., Santos, S. C., & Morris, M. H. (2020). Overcoming barriers to technology adoption when fostering entrepreneurship among the poor: The role of technology and digital literacy. *IEEE Transactions on Engineering Management*, 68, 1605–1618.
17. Uechi, E. (2019). *Public service information technology: The definitive manager's guide to harnessing*

technology for cost-effective operations and services. CRC Press.

18. Gallino, S., & Rooderkerk, R. (2020). New product development in an omnichannel world. *California Management Review*, 63, 81–98.
19. Sankaran, S., Müller, R., & Drouin, N. (2017). *The Cambridge handbook of organizational project management*. Cambridge University Press.