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ABSTRACT 

Article history: 
 The article examines the Kendall methodology as an integrated 

quantitative WT/PE architecture that translates heuristic market 

intuition into a formalized language of signals, portfolio rules, and rigid 

verification procedures on long historical series. The growth of backtest 

overfitting risks drives the relevance of the study, demands for regulatory 

and institutional transparency, and the industry’s shift toward integrated 

AI/ML pipelines, in which the verifiability of trading algorithms becomes 

as significant as their predictive power. The objective of the work is to 

articulate, in scientific terms, the internal logic of the 

WaveTech/PortfolioExpert linkage, the core of proprietary indicators 

(SMA bands 10/21/41, PPM oscillators, ER metric), and to demonstrate 

how thematic concentrated Top ER portfolios with a controlled risk 

profile are formed through signal confluence and ER-based selection. The 

scientific novelty consists in a systemic formalization of the robustness-

by-design principle for a practical trading platform: multi-level 

timeframe alignment, a discrete signal refresh regime, outlier exclusion, 

strict in-/out-of-sample and walk-forward discipline, and a substantiated 

inclusion of ML-enhanced Genetic Evolution Algorithms as a meta-layer 

for searching interpretable strategies without transitioning to an opaque 

black box. The main results show that a portfolio constructed exclusively 

on ER logic and transferred statically from the in-sample period 2015–

2020 into the out-of-sample window 2021–2025 preserves positive 

dynamics under an expected reduction in returns, which is interpreted as 

empirical evidence of construct transferability and of the limits of its 

adaptability to changing market regimes. The article will be helpful to 

researchers and practitioners of quantitative trading, portfolio managers, 

trading-platform architects, and risk specialists interested in 

reproducible and auditable algorithmic strategies. 
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1. Introduction 

The quantitative trajectory of Robert Kendall over 45 years has shaped a methodology in which market intuition 

is translated into a strict, verifiable language of data and rules. This approach is most fully embodied in the 

WaveTech (WT) and PortfolioExpert (PE) platforms, where technical precision is combined with systemic 

discipline: signals and decisions are treated not as isolated conjectures, but as elements of a formalized model 

capable of retaining operability amid decades-long evolution of market regimes. The internal logic of the 

platforms rests on a broad investment universe and extensive historical memory: a database of more than 15,000 

financial instruments is supported (predominantly equities and ETFs, as well as selected futures), while 

continuous opportunity scanning is reinforced by data in which a portion of the tests spans 45+ years, thereby 
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providing a statistical foundation for detected regularities. 

In applied and research terms, the Kendall framework was interpreted and extended through more than five 

years of academic work: the author conducted backtesting and real-trading deployment, complementing the 

original methodology with proprietary models of statistical evaluation, principles of asset selection, and portfolio 

construction. The outcome was a comprehensive scheme that united traditional trading principles with modern 

data-driven procedures for signal quality control. Within this scheme, strict risk management remains central, 

along with the operational rule that allows profits to run while simultaneously stopping the bleeding through 

loss cutting. Practical discipline is supported by an entry/exit checklist, a recommendation to trust only those 

signals that are confirmed by a sufficient trade history for the instrument (ideally 3–5 years), and to exclude 

statistically insignificant cases; additionally, a statistical overlay analyzes trade logs for outliers, including the 

exclusion of abnormally large wins, so that strategy expectations remain realistic. 

This article presents a scientific review framework of the Kendall methodology, as it was presented and applied 

by the author, and lays the groundwork for its practical application to retail and institutional investors, family 

offices, and trading platforms. Particular attention is paid to transparency, as all trading activity and performance 

indicators are recorded in detailed logs that are updated on a daily or weekly basis, enabling continuous 

verification and external audit.  

 

2. Materials and Methodology 

This work relies on a two-loop corpus of materials: (i) practical-empirical artifacts of the Kendall trading 

ecosystem, architectural descriptions of WaveTech and PortfolioExpert, specifications of proprietary indicators 

(SMA bands 10/21/41 and PPM oscillators), rules for discrete signal updates (day/week), as well as trade journals 

and aggregated performance tables including in-sample (2015–2020) and out-of-sample (2021–2025) windows; 

and (ii) academic sources from the References list, which define methodological constraints and an interpretive 

language for the results. The theoretical quality-control framework includes studies on backtest overfitting and 

false discovery risks in financial tests [1], on procedural rigor of out-of-sample and walk-forward checks [11], and 

on the risk of spurious model selection and information leakage [10]. To substantiate the composition signal layer 

to portfolio layer, works on machine learning in the portfolio-selection paradigm [2] and on the 

concentration/diversification trade-off [4] are used; in discussing the extension of WT/PE via AI/ML, review and 

applied studies on financial forecasting and integrated analysis/validation pipelines are used [12], as well as 

reinforcement learning for trading/allocation [3, 14] and evolutionary methods for generating interpretable 

trading rules [17]. 

Methodologically, the article is constructed as a multi-layer mixed design that simultaneously decomposes the 

system and tests its transferability: (1) an architectural-functional decomposition of WT and PE with role fixation 

(top-down screening and generation of discrete long-only signals vs. portfolio construction and execution), 

followed by operationalization of key entities (confluence, model selectivity, signal update rule) in terms of 

robustness to regime changes [2]; (2) a comparative-explanatory analysis of the core indicators, where SMA 

bands are interpreted as a trend filter and PPM as a probabilistic proxy estimate of holding support/resistance, 

which is juxtaposed with empirical results on trend rules and momentum [7]; (3) protocol-driven empirical 

validation through strict separation of development and testing phases: a reproducible description of the in-

sample stage, then a direct move forward in time into the out-of-sample window without changing portfolio 

composition and without additional tuning, which is treated as a key barrier against fitting and model mirages 

[11]. Additionally, to reduce the illusion of alpha from outliers, the research loop explicitly maintains the principle 

of expectation realism through log analysis and the exclusion of abnormally large wins as a source of unstable 

estimates, which is conceptually aligned with procedural verifiability requirements in applied algorithmic trading 

[1]. 

 

3. Results and Discussion 

3.1. WaveTech (WT) & PortfolioExpert (PE): Architecture & Key Indicators 

WaveTech (WT) and PortfolioExpert (PE) in the described trading system serve as two complementary 
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subsystems, sharing a methodological foundation but with distinct points of application. WT is treated as a top-

down analysis mechanism (from the overall market through sectors and groups down to a specific instrument) 

and a signal generation engine. In contrast, PE uses these signals as inputs for building thematic, relatively 

concentrated portfolios and for subsequent trade execution. At the architectural level, this implies a functional 

separation: WT is responsible for identifying entry/exit conditions (in terms of probabilistic edge and market 

context), and PE for how precisely this edge is realized via capital allocation, position-building rules, and risk 

control at the portfolio level [2]. 

At the top level, WT covers indices, commodity futures, ETFs, and individual securities. Signals are constructed 

from a combination of a large set of logics and quantitative technical indicators aggregated across multiple 

timeframes. Such a multi-component design is valuable not per se, but as an attempt to reduce the probability 

of false regularities arising from rule enumeration on historical data: the phenomenon of backtest overfitting is 

widely described in academic literature as a systematic source of mirages in test results and as a cause of strategy 

degradation out of sample [1]. In this sense, an orientation toward signal confirmation by multiple logics can be 

interpreted as a practical implementation of robustness-by-design, where predictive precision is subordinated 

to decision stability in the face of regime shifts. 

WT output is formulated as long-only buy signals across four models: two models operate on a daily horizon and 

two on a weekly horizon. A crucial operational aspect is that signal updating is declared discrete: for daily models, 

it occurs at the end of the trading day. For weekly models, it happens upon completion of the week. Within the 

day or week, the signal is not recalculated. This regime, in essence, renounces high-frequency reactivity and 

reduces the influence of micro-noise, thereby facilitating entry/exit planning and aligning decisions among 

execution participants. Table 1 illustrates the signal update and execution schedule for daily or weekly models. 

 

Table 1. Signal Update & Execution Schedule for Daily / Weekly Model 

By Timeframe Daily Weekly 

Update Completed 9:00 PM / MON - FRI 9:00 PM / FRI 

Signal Entrance Next morning Following Monday 

 

The logic of separating weekly and daily models is described in the system as a functional decomposition by risk-

taking horizon. Weekly models are interpreted as contextual, as they filter out a substantial fraction of short-

term noise and establish the dominant trend. In contrast, daily models are tactical, enabling more frequent entry 

and exit within a longer move. Multi-timeframe alignment practice is broadly consistent with the more general 

notion of reducing decision errors through a consistency requirement across different data representations, i.e., 

a quasi-ensemble approach in which multiple models must agree to reduce the probability of false triggering [3]. 

Table 2 shows the differentiation between daily and weekly models. 

 

Table 2. Differentiation between Daily and Weekly Models 

By Timeframe Daily Weekly 

Aggressiveness More Less 

Accuracy Less More 

 

Within each timeframe, the models additionally differ by reaction speed. Models #3 are positioned as more 

conservative, as they utilize an additional momentum filter (PPM #4), becoming more selective and trading less 

frequently. By contrast, models #1 are treated as faster and more aggressive: in the absence of the specified 

filter, they can generate earlier signals; however, this is typically associated with an increased frequency of false 

entries and, consequently, a higher risk profile. Constructively, this creates an embedded robustness check. If a 
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signal emerges only in the more aggressive configuration but is not confirmed by the conservative version or by 

the higher timeframe, the entry decision requires additional validation (e.g., waiting for weekly confirmation). 

Table 3 illustrates the differentiation between the #1 and #3 models. 

 

Table 3. Differentiation between #1 vs #3 Models 

By Model #1 #3 

Aggressiveness More Less 

Accuracy Less More 

V-Bottom Often catch Often miss 

 

Next, the system introduces the concept of signal confluence: the author develops a statistical framework that 

describes how combinations of outputs from different models are transformed into an estimate of overall signal 

strength and how this estimate can be utilized in portfolio construction. Importantly, such frameworks must 

inevitably be tested for robustness to overfitting not only in the classical machine-learning sense, but also in the 

finance-specific sense of multiple testing and selection bias. Therefore, procedures of strict out-of-sample control 

and robust validation schemes are methodologically relevant [1]. Figure 1 illustrates the WT trade profile screen, 

which displays the projected trade duration, target profit, and stop-loss. 

 

Figure 1. WT trade profile screen: projected trade duration, target profit, and stop loss 

If WT is described as the layer of what and when to buy, PE is the layer of how exactly to buy, i.e., the circuit of 

portfolio construction, optimization, and execution. In particular, PE is oriented toward thematic, relatively 

concentrated portfolios, where concentration is understood not only as a small number of positions but also as 

a specific selection regime in which the trade-off between diversification and concentration becomes 

parametrically dependent on admissible risk and target constraints [4]. At the same time, the practical realization 

of concentration inevitably requires enhanced risk control at the position and portfolio levels, since reducing the 

number of components increases the sensitivity of outcomes to signal errors or market regime shifts. 

In PE execution mechanics, elements of dynamic risk management are highlighted, including position sizing, 

partial profit-taking (profit slicing), and multi-level stop mechanisms, such as gradual exposure reduction as the 

confluence score deteriorates. From a scientific standpoint, such practices can be related to more general 

approaches to drawdown control and risk limitation via feedback rules and maximum drawdown constraints, 

which have been studied in both financial engineering and optimization settings [5]. At the level of individual 

trades, the use of stop levels and exit rules is also a subject of empirical research, which shows that correctly 

specified stop rules can substantially alter the distribution of strategy outcomes and their risk-adjusted 

characteristics [6]. 

As a result, WT and PE form a multi-level circuit: WT provides discrete, multi-timeframe long-only signals, while 

PE transforms them into portfolio decisions through thematic concentration, allocation rules, and risk-

management procedures (scaled entry, partial closing, cascading stops). Importantly, such a composition itself 
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imposes requirements for proving robustness: the richer the set of rules and the more complex the signal 

orchestration, the stricter the validation discipline must be; otherwise, the probability increases that the system 

will perform well in the past but poorly in new market regimes.  

3.2. The heart of WT and PE - Kendall’s proprietary Indicators & Metrics 

The core of signal generation relies on a set of proprietary indicators and metrics that bind interpretations of 

trend, momentum, and probabilistic level holding into a unified rule system. As a foundational scaffold, SMA 

bands with periods 10, 21, and 41 are used: the model not only computes moving averages but also evaluates 

how price behaves relative to these lines and their mutual arrangement. In the internal terminology of the 

system, the 21-period SMA (PPM2) is treated as the Primary Demand Line, i.e., a key intermediate-demand line 

around which the notion of support in an uptrend is formed. SMA crossings (analogous to golden/death cross), 

combined with whether the price is above or below the relevant averages, determine trend state and 

subsequently enter entry/exit trigger conditions. In applied terms, this corresponds to the literature’s common 

idea that moving-average rules are a compact form of trend filter, and that their effectiveness and sensitivity 

depend on horizon choices and market context [7]. 

If SMA bands define trend geometry and levels of potential mean-reversion dynamics, then PPM (Price Pressure 

Momentum) acts as a translator of momentum into a probabilistic language of support/resistance. In the system, 

PPM is represented as a set of oscillators that quantitatively estimate the probability that the price will remain 

above (or be pressed below) key moving averages. In this setup, PPM1, PPM2, and PPM3 correspond to the 10-, 

21-, and approximately 40-period SMA, while PPM4 is used as an additional filter in selected, more selective 

models. This construct is conceptually similar to how modern studies describe the role of momentum: it does 

not replace price. Still, it often captures transitional phases and regime changes before they fully manifest in the 

trend component [8]. Figure 2 illustrates the PPM indicator visualization. 

 

Figure 2. Price Pressure Momentum Indicator visualization 

Practically, this means that a strong buy signal in WT, as a rule, implies coherently favorable PPM values across 

multiple timeframes, i.e., confirmation of support quality not only by the price position relative to the SMA but 

also by a pressure/momentum estimate interpreted as the probability of the level holding. Table 4 illustrates 

applicable actions for different PPM values. 
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Table 4. Reading PPM (Price Pressure Momentum) Indicator 

PPM Values Trend Description Based on the Value Applicable Actions 

PPM > 0.25 Confirmed BULLISH (UP) Trend mode with established SUPPORT 

⇒ probability of the price to DROP BELOW the appropriate SMA 

is LESS THAN 20% 

Consider BUY 

0.15 < PPM ≤ 

0.25 

Unconfirmed BULLISH (UP) Trend mode with SUPPORT not 

established nor confirmed ⇒ probability of the price to DROP 

BELOW the appropriate SMA is BETWEEN 20–40% 

WL or BUY 

-0.15 < PPM < 

0.15 

BE CAUTIOUS! No SUPPORT could be determined, No Trade Zone, Indecision, Sideways 

movement likely to occur. 

-0.25 < PPM ≤ -

0.15 

Unconfirmed BEARISH (DOWN) Trend mode ⇒ NO SUPPORT, 

probability of the price to INCREASE ABOVE the appropriate SMA 

is BETWEEN 20–40% 

WL or consider closing 

open positions 

PPM < -0.25 Confirmed BEARISH (DOWN) Trend mode ⇒ NO SUPPORT, 

probability of the price to INCREASE ABOVE the appropriate SMA 

is LESS THAN 20% 

Open positions are most 

likely closed or will be 

closed soon. NO TRADE 

ZONE FOR LONGS; MAY 

CONSIDER SHORTING! 

 

The next logical layer is ER (Effectiveness Rating), a proprietary performance metric used primarily for comparing 

the quality of models across instruments and within a single instrument, rather than determining the current 

market state. In meaning, ER is closely related to the class of risk-adjusted measures, as it aggregates the 

historical trade outcomes of a model on a specific asset, indicating a more favorable return–risk relationship (or, 

more broadly, more reliable model behavior on the given asset) with a higher value. This directly links the WT 

signal block to the PE portfolio logic from the previous fragment: when a portfolio is constructed in a 

concentrated and thematic manner, the value increases of selection criteria that discipline instrument inclusion 

based on comparable risk-adjusted characteristics rather than merely on signal presence [9]. A detailed example 

of ER calculation is shown in Figure 3.  

 

Figure 3. Detailed Example of ER Calculation 
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The author applies ER as an asset inclusion filter: a Top ER portfolio is formed by sorting instruments by average 

ER (aggregated across models), followed by iterative filtering of positions that do not improve the portfolio’s 

aggregate characteristics. In addition, the system sets a practical minimum ER threshold for instrument eligibility 

(as an internal heuristic constraint), such that ER simultaneously functions as a proxy estimate of signal trust and 

as a formal selection criterion for increasing the robustness of portfolio decisions [9].  

3.3. WT and PE Empirical Validation 

The portfolio was initially constructed and tested over a six-year in-sample horizon, after which the author 

tracked and recorded its realized dynamics over the subsequent five years, using a quantitative selection 

procedure without fundamental overlays or discretionary adjustments. The stated values of cumulative return 

and derived annual indicators refer to the author’s internal report and must be interpreted in conjunction with 

the underlying tables and equity curves shown below, since they act as the primary carriers of the statistics. 

 

Table 5. Summary metrics of the top ER portfolio 

Summary metrics Annual Return 

# Symbols 21 2015 3% 

$ Equity + Cash 59,162,729 2016 148% 

Inception date 1/1/2015 2017 164% 

Initial INV 1,000,000 2018 169% 

ROI 5916% 2019 30% 

Return / Year 1000% 2020 140% 

 

Within the logic of the previous sections, this is important because alignment of horizons was declared as a 

robustness-enhancing mechanism. In contrast, the dominance of only one circuit typically increases the risk of 

regime fragility. At the same time, any exceptionally high in-sample values, by definition, require heightened 

discipline in overfitting checks, since financial backtests are particularly sensitive to multiple testing, hidden 

fitting, and inflated quality estimates under rule enumeration. 

The process of constructing a Top ER portfolio constitutes sequential statistical filtration. First, a broad universe 

is formed (15,000 symbols are specified in the text), then each symbol is ranked by ER Average, defined as the 

mean ER value across all WT/PE models for the given instrument. After the initial ranking, a top group is selected 

(the top 100 in the text) and placed into a model portfolio of a specified capital scale. Subsequently, several cycles 

of iterative cleaning are executed, excluding instruments with negative net profit or net profit below a specified 

threshold. This functions as a test of the intrinsic value of Kendall’s proprietary metrics: if a portfolio built 

exclusively on ER logic, without external filters and without expert intervention, demonstrates stable dynamics, 

the argument strengthens that ER reflects not an accidental correlation but a reproducible performance 

structure. However, in terms of modern backtesting methodology, the critical condition remains the correct 

separation of data and the absence of information leakage: even with formal training/testing splits, unintentional 

peeking of future information is possible, leading to the systematic inflation of out-of-sample expectations [10]. 

Summary metrics of the top ER portfolio by symbol (in-sample validation) are shown in Table 6. 
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Table 6. Summary metrics Top ER Portfolio by Symbol (in-sample validation) 

# Ticker MDL Net $ P/L Net % P/L % Win ER Sym ER Prtfl 

1 ARWR d1 6,433,000 20% 67% 215 247 

2 VERI d3 5,962,512 21% 64% 395 1,058 

3 BYND d1 4,366,290 23% 67% 343 468 

4 NBEV d1 4,341,640 13% 49% 230 469 

5 CRMD d3 3,076,577 20% 59% 298 421 

6 TRIL d3 2,699,510 8% 53% 308 312 

7 ROKU d3 2,176,355 7% 73% 271 291 

8 NXST d1 2,096,815 7% 60% 168 188 

9 WHD d3 1,703,150 13% 82% 403 376 

10 NAK w1 1,683,825 17% 72% 367 451 

11 BWEN w1 1,276,815 17% 75% 1,035 279 

12 CBAY w3 1,204,347 325% 67% 784 1,700 

13 VKTX w3 1,166,881 37% 63% 1,470 1,538 

14 HEAR w1 972,705 12% 57% 617 514 

15 DCP d1 955,666 3% 67% 143 222 

16 EVRI w1 683,117 13% 87% 277 404 

17 LNTH w1 405,986 7% 73% 1,573 1,870 

18 IO w1 359,175 8% 62% 235 394 

19 TVTY w3 314,816 6% 75% 336 241 

20 SAGE w3 264,037 7% 75% 641 772 

21 GOOS w3 206,264 8% 50% 587 455 

 

Moving from in-sample to testing on unseen data, an out-of-sample stage is выделен, dated 2021–2025, and is 

treated as more stringent validation because it imitates moving forward in time and checks whether the positive 

effect persists after market regime changes. In the theory and practice of trading-strategy validation, exactly this 

regime (ideally walk-forward) is regarded as a key safeguard against fitting, as it preserves information-set 

discipline and forces the model to operate on data that could not have influenced its construction [11]. Figure 4 

illustrates the equity curve of the top ER out-of-sample testing for 2021 - 2025. 
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Figure 4. Equity Curve of Top ER Out-Of-Sample Testing for 2021 - 2025 

The in-sample period is interpreted as a development and tuning stage in a historical environment, where higher 

compounding indicators are typically observed, and parameter–data correspondence manifests more strongly. 

In contrast, the out-of-sample period is treated as a robustness check against the degradation of results after 

transfer to new time segments. The characteristic out-of-sample dynamics are emphasized: initial deterioration 

at the beginning of the window, followed by recovery in later years, which is interpreted as a sign of the 

construction’s adaptability to regime change without requiring structural re-optimization. Such formulations are 

consistent with the general empirical observation that the gap between in-sample and out-of-sample results is 

the norm rather than an exception and should be assessed as part of strategy risk rather than as a test failure 

[1]. Tables and figures below illustrate the comparison. 

 

Table 07. Monthly / Annual Rate of Returns Top ER Out-of-Sample testing for 2021 - 2025 

Period 2021 2022 2023 2024 2025 

ANNUAL -9.6 -17.5 18.5 40.6 27.3 

January 13.9 -0.3 13.1 -0.8 -0.3 

February 7.2 -1.5 -1.7 31.5 -5.1 

March -7.8 1.9 -3.5 11.5 3.3 

April 2.3 -13.3 9.6 -7.6 -0.9 

May 1.0 -4.5 -3.1 4.8 6.4 

June 4.3 -4.6 -3.0 -6.8 7.8 

July -6.2 9.9 9.9 5.8 2.2 

August -6.8 2.7 -11.6 -1.1 6.4 

September -2.7 -6.3 -6.0 4.4 10.6 

October 4.7 4.4 3.3 -1.1 1.4 

November -8.9 5.6 0.2 -0.7 -6.2 

December -8.2 6.6 3.2 -0.5 - 
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Figure 5. Annual returns comparison: Top ER Portfolio In-Sample backtesting vs Out-of-Sample validation 

 

Table 08. Detailed Characteristics Comparison: Top ER Portfolio In-Sample backtesting vs Out-of-Sample 

validation 

Metric In-Sample (2015–2020) Out-of-Sample (2021–2025 YTD) 

Period Type Training / Development Phase Validation / Live Forward Testing 

Average Annual Return ≈109% ≈8–10% 

Data Usage Used for model training & optimization Strictly unseen for validation 

Portfolio Composition Fixed - no new, removed, or replaced 

symbols 

Unchanged - identical universe 

Applied Filters Build methodology + ER-based filter only Same filters applied, no tuning 

Volatility Profile High volatility with consistent positive 

drift 

Initial drawdown followed by strong recovery 

Best Year 2018: +169% 2024: +40.6% 

Worst Year 2015: +3% 2022: -17.5% 

Interpretation Optimized high-performance learning 

phase 

Realistic stress-tested market validation 

 

The transition between phases was executed cleanly: the portfolio composition was not changed, no additional 

filters beyond the original ER methodology were introduced. Therefore, out-of-sample results should be treated 

as a direct test of the transferability of the initial construction, minimizing the risk of retrospective fitting and 

data leakage. From the standpoint of scientific integrity, this is a material clarification, because strategy 

robustness is determined not only by return magnitude but also by protocol transparency, decision traceability, 

and verifiability of execution logs, particularly in an applied domain where black-box claims often fail procedural 
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scrutiny [10]. 

Continuing the logic of the previous sections, where WT sets signal discipline, and PE transforms it into 

reproducible portfolio execution (with an emphasis on robustness, cross-timeframe confirmation, and ER-based 

selection), the next step is naturally formulated as scaling this inherited alpha via modern AI/ML tools without 

loss of the original rule transparency. In practical terms, this concerns not replacing WT/PE with a neural network, 

but converting the system into a unified automated analytical-trading platform in which the computational core 

remains unchanged in meaning, while interfaces and decision circuits become faster, more coherent, and less 

manual; this is consistent with how modern literature describes the evolution of financial modeling from isolated 

signals to integrated end-to-end pipelines of analysis, validation, and application under changing regimes [12]. 

The technical trajectory of such a transition can be described as architectural unification: consolidation of WT, 

PE, and indicator modules (including compatibility with graphical layers at the TradingView level) into a 

centralized web environment with a shared backend and a unified database, potentially extensible to a mobile 

client. On this basis, the intelligent user-interaction layer shifts the main load from manual chart inspection to 

managed queries and reports, including signal screening templates, batch instrument evaluation, drill-down from 

market/sector to symbols, and aggregated analytics of signal strength, thereby reducing latency between the 

emergence of confluence conditions and decision-making. In parallel, visualization and backtesting are 

embedded into the same circuit: comparison of multiple model outputs on a single chart, native overlays of 

support/resistance levels and projections, and automated runs across markets, timeframes, and instruments, 

such an integrative design reduces the risk of divergence between research backtests and executable strategies 

through a common data source and unified calculation procedures [13]. 

At the portfolio level, PE development is conceptually described as a transition from a static rule set to a self-

learning capital allocation scheme across themes and models. For example, in the reinforcement learning 

paradigm, an agent optimizes allocation under current constraints and observed market dynamics. Academic 

works on RL portfolio management demonstrate that such agents can directly optimize the portfolio objective 

function, bypassing a separate return-forecasting stage; however, interpretability and risk control remain critical, 

as the system otherwise becomes a difficult-to-audit black box [14]. In order not to undermine the robustness-

by-design principle, a regime-adaptive ensemble appears reasonable: combining signals from different WT/PE 

models (as before) while adding contextual features, macro indicators, news/social sentiment, and, when 

expanding to crypto markets, on-chain metrics, so that the system can recognize regime shifts and change 

priorities without manual retuning, corresponding to modern approaches to detecting and early-warning regime 

switches [15]. 

Finally, the research circuit can be accelerated via ML-enhanced evolutionary optimization (genetic algorithms 

for hyperparameter tuning and feature selection across a grid of markets and timeframes), but only under strict 

out-of-sample and walk-forward discipline; otherwise, automation merely accelerates the production of overfit 

configurations. Empirical studies demonstrate that GA approaches can indeed enhance results compared to 

naive enumeration, albeit at the expense of complicating quality-control procedures [16]. When translating the 

system into end-to-end execution (signal generation, trade, rebalancing), the requirement for data integrity 

becomes as primary as the models themselves: automated ticker management (delistings, renamings, corporate 

actions), stable identifiers, and verifiable validation pipelines are necessary; otherwise, backtest and production 

begin to inhabit different realities. 

In parallel, to preserve the previously stated verifiability and trust in results, it is advisable to design audit trails 

and control circuits in the spirit of regulatory expectations for algorithmic trading (documentation of algorithm 

life cycles, testing, monitoring, and the ability to reconstruct decisions), while launching a flagship portfolio on 

real capital in such a setup functions not as a marketing declaration but as a live-environment verification 

instrument under unchanged rules. 

3.4. Justification for GEAs' application in Quantitative Strategy Optimization 

Within the logic of the previously proposed circuit of WT/PE self-evolution through ML-enhanced Genetic 

Evolution Algorithms (GEAs), the key argument in favor of evolutionary optimization is not novelty effect but 

congruence between the method’s nature and the market’s nature. Evolutionary algorithms (genetic algorithms, 

genetic programming, and broader evolutionary metaheuristics) implement a bio-inspired search scheme in 

https://scientiamreearch.org/index.php/ijefms


https://scientiamreearch.org/index.php/ijefms 
 

 

COLOMBO SCIENTIFIC PUBLISHING  
 

 
26 

which competing strategy configurations undergo mutations and recombination, after which variants with 

superior objective-function values survive. In the context of trading systems, this is convenient because the 

search is conducted in discrete and discontinuous spaces of rules and parameters (where gradients are 

meaningless or unavailable). At the same time, the optimum is often jagged and multimodal. Such landscapes 

are treated as a typical case for large-scale evolutionary optimization tasks. 

Markets remain nonstationary adaptive systems: relationships between features and returns shift with 

participants, liquidity regimes, and the regulatory environment; therefore, assumptions of static, smooth, and 

convex optimization prove excessively fragile. The practical strength of GEAs is that they, first, support diversified 

search (avoiding entrapment in a single local solution), second, naturally formulate as multi-criteria procedures 

(return, risk, stability, drawdown constraint), and, third, allow parallel testing of a large number of candidates 

without forcing the model to fit a single metric. This is particularly relevant for WT/PE, where robustness was 

previously elevated to a design principle (model confluence, timeframe separation, out-of-sample discipline), 

and where optimization must strengthen solution transferability rather than merely the beauty of the backtest. 

From an applied standpoint, GEAs are convenient as a universal meta-layer for tasks that inevitably arise in an 

evolving WT/PE, including automated feature and filter selection, hyperparameter tuning, discovery of signal 

structures, and generation of interpretable trading rules (in the case of genetic programming). Notably, recent 

studies have applied genetic methods to both the construction/optimization of trading rules, as well as to tuning 

time-series model parameters. In these applications, GA is used to select network configurations or their 

hyperparameters, demonstrating practical value as a search engine over a complex variant space [17]. 

Finally, integrating GEAs within the WT/PE conceptually translates the system from a static design into a self-

optimizing research–execution ecosystem: strategies can be continuously generated, selected, and validated, 

but only under the condition that fitness functions and testing protocols are rigidly protected against overfitting 

and leakage (otherwise, evolution will accelerate not alpha discovery but artifact production). Here, GEAs deliver 

not a miracle model, but a controllable search procedure, which WT/PE rules can discipline. The original multi-

model logic and timeframe-alignment requirements become constraints on the solution space. At the same time, 

out-of-sample and walk-forward checks serve as the filter separating adaptivity from fitting. 

 

4. conclusion 

The presented review fixes the Kendall methodology as a rare example in applied trading of a systemic translation 

of market intuition into a formal, operationally executable language of rules, data, and verification procedures. 

The internal WT/PE logic rests on a broad instrument universe and long historical memory, fundamentally shifting 

emphasis from episodic finds to regime-change robustness: signals are treated not as isolated conjectures but as 

elements of a multi-level circuit, where WT provides top-down context and discrete long-only entry/exit 

conditions on daily and weekly horizons, while PE implements these conditions through thematic concentrated 

portfolios, parameterized allocation, position scaling, profit slicing, and cascading stops. An essential scientific 

implication of such an architecture is not so much a promise of accuracy as an attempt at robustness-by-design: 

multi-component indicator logic, timeframe alignment, and the confluence requirement are interpreted as 

pragmatic barriers against backtest overfitting and false regularities, while discrete signal updates (upon 

completion of day/week) reduce the role of micro-noise and increase execution reproducibility. 

The key technical semantics of the system are reduced to the core proprietary metrics: SMA bands (10/21/41) 

form trend geometry and reference levels. At the same time, PPM translates momentum into a probabilistic 

interpretation of price holding relative to corresponding averages, thereby linking a trend filter to an assessment 

of the quality of support and resistance. Above this, ER is introduced as a historical effectiveness metric, 

functionally close to the class of risk-adjusted criteria and performing the role of a disciplining inclusion filter: the 

Top ER portfolio is built by sequential statistical filtration, from ranking by mean ER across models to iterative 

cleaning by position effectiveness, i.e., within a logic where signal alone is insufficient without a proxy estimate 

of trust. Thus, WT and PE form a closed methodological chain: from probabilistically interpretable conditions 

(PPM/SMA) and confluence signal strength to portfolio implementation, where concentration is understood as 

a controlled risk regime requiring strengthened control procedures, transparent entry/exit checklists, and 

reliance on sufficient statistical trade history per instrument with exclusion of statistically insignificant and outlier 
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cases. 

The empirical section, despite the declared impressive power of the in-sample phase (2015–2020), is 

conceptually valuable primarily because it emphasizes the distinction between a training phase and a testing 

phase and presents the out-of-sample window 2021–2025 as a transferability test under unchanged portfolio 

composition and without additional tuning, i.e., as a more stringent robustness regime against regime shifts. The 

recorded gap between in-sample and out-of-sample dynamics is interpreted as the normal cost of honest 

validation. At the same time, the observed deterioration at the beginning of the window, followed by recovery, 

is treated as a sign of construction adaptivity without structural re-optimization. At the same time, the high 

complexity of rule orchestration strengthens the methodological imperative of strict out-of-sample/walk-

forward protocols and leakage control, since otherwise the richness of logics becomes not a source of robustness 

but a fitting accelerator. Within this framework, the proposed extension via AI/ML and GEAs appears not as 

replacing rules with a black box, but as an attempt to industrialize search and tuning in a discrete parameter 

space while preserving original verifiability: evolutionary methods are positioned as a meta-layer for multi-

criteria optimization and generation of interpretable rules, but only under the condition that transparency 

discipline, audit trails, and validation filters remain primary, otherwise self-evolution will reproduce not alpha 

but testing artifacts. 
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