Articles | Open Access | DOI: https://doi.org/10.55640/ijcsis/Volume09Issue12-02

HARNESSING MACHINE LEARNING MODELS FOR ACCURATE CUSTOMER LIFETIME VALUE PREDICTION: A COMPARATIVE STUDY IN MODERN BUSINESS ANALYTICS

Md Parvez Ahmed , Master of Science in Information Technology, Washington University of Science and Technology, USA
Ashim Chandra Das , Master of Science in Information Technology, Washington University of Science and Technology, USA
Pinky Akter , Master Of Science in Information Technology, Westcliff University, USA
Sanjida Nowshin Mou , Department of Management Science and Quantitative Methods, Gannon University, USA
Sanjida Akter Tisha , Master of Science in Information Technology, Washington University of Science and Technology, USA
Farhan Shakil , Master’s in Cybersecurity Operations, Webster University, Saint Louis, MO, USA
Pritom Das , College of Computer Science, Pacific States University, Los Angeles, CA, USA
Md Khalilor Rahman , MBA in Business Analytics, Gannon university, Erie, Pennsylvania, USA
Adib Ahmed , Department of Management Science and Quantitative Methods, Gannon University, USA

Abstract

This study evaluated multiple machine learning models to predict customer lifetime value (CLV), including ensemble methods, linear regression, and deep learning architectures. Our comparative analysis demonstrated that ensemble models, such as Random Forest and Gradient Boosting, provided a robust balance of accuracy and interpretability, while deep learning approaches excelled in capturing complex data patterns but required higher computational resources. The results highlight the trade-offs businesses must consider in selecting models based on data availability, scalability, and interpretability. The insights from this research enable businesses to identify high-value customers effectively, optimize marketing strategies, and drive sustainable profitability.

Keywords

Customer Lifetime Value, Machine Learning, Model Comparison, Predictive Analytics

References

Al-Imran, M., Akter, S., Mozumder, M. A. S., Bhuiyan, R. J., Rahman, T., Ahmmed, M. J., ... & Hossen, M. E. (2024). EVALUATING MACHINE LEARNING ALGORITHMS FOR BREAST CANCER DETECTION: A STUDY ON ACCURACY AND PREDICTIVE PERFORMANCE. The American Journal of Engineering and Technology, 6(09), 22-33.

Buckinx, W., & Gupta, S. (2003). The Calculus of Customer Lifetime Value. Marketing Science, 22(2), 139-154.

Chen, T., Xu, B., Chen, C., & Ghosh, J. (2015). Deep Learning for Visual Understanding. arXiv preprint arXiv:1504.06861.

Fader, P. S., Hardie, B. G., & Lee, K. S. (2005). Modeling Consumer Purchase Behavior with Application to Direct Marketing. Marketing Science, 24(3), 370-381.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Gupta, S., Lehmann, D. R., & Stuart, J. A. (2006). The Long-Term Impact of Pricing and Promotions on Category Demand. Management Science, 52(9), 1339-1355.

Hansotia, B., & Singh, S. N. (2000). Customer Lifetime Value Research: A Review. Journal of Interactive Marketing, 14(1), 1-14.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

Kumar, V., & Shah, D. (2006). Building and Sustaining Profitable Customer Loyalty for the 21st Century. Journal of Retailing, 82(4), 277-290.

Reichheld, F. F., & Sasser, W. E. (1990). Zero Defections: Quality Comes to Services. Harvard Business Review, 68(5), 105-111.

Srinivasan, S., Anderson, R., & Pauwels, K. (2001). Do Loyalty Programs Create Value for Consumers? Advances in Consumer Research, 28, 79-85.

Shinde, N. K., Seth, A., & Kadam, P. (2023). Exploring the synergies: a comprehensive survey of blockchain integration with artificial intelligence, machine learning, and iot for diverse applications. Machine Learning and Optimization for Engineering Design, 85-119.

Md Habibur Rahman, Ashim Chandra Das, Md Shujan Shak, Md Kafil Uddin, Md Imdadul Alam, Nafis Anjum, Md Nad Vi Al Bony, & Murshida Alam. (2024). TRANSFORMING CUSTOMER RETENTION IN FINTECH INDUSTRY THROUGH PREDICTIVE ANALYTICS AND MACHINE LEARNING. The American Journal of Engineering and Technology, 6(10), 150–163. https://doi.org/10.37547/tajet/Volume06Issue10-17

Tauhedur Rahman, Md Kafil Uddin, Biswanath Bhattacharjee, Md Siam Taluckder, Sanjida Nowshin Mou, Pinky Akter, Md Shakhaowat Hossain, Md Rashel Miah, & Md Mohibur Rahman. (2024). BLOCKCHAIN APPLICATIONS IN BUSINESS OPERATIONS AND SUPPLY CHAIN MANAGEMENT BY MACHINE LEARNING. International Journal of Computer Science & Information System, 9(11), 17–30. https://doi.org/10.55640/ijcsis/Volume09Issue11-03

Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04

Bhandari, A., Cherukuri, A. K., & Kamalov, F. (2023). Machine learning and blockchain integration for security applications. In Big Data Analytics and Intelligent Systems for Cyber Threat Intelligence (pp. 129-173). River Publishers.

Diro, A., Chilamkurti, N., Nguyen, V. D., & Heyne, W. (2021). A comprehensive study of anomaly detection schemes in IoT networks using machine learning algorithms. Sensors, 21(24), 8320.

Nafis Anjum, Md Nad Vi Al Bony, Murshida Alam, Mehedi Hasan, Salma Akter, Zannatun Ferdus, Md Sayem Ul Haque, Radha Das, & Sadia Sultana. (2024). COMPARATIVE ANALYSIS OF SENTIMENT ANALYSIS MODELS ON BANKING INVESTMENT IMPACT BY MACHINE LEARNING ALGORITHM. International Journal of Computer Science & Information System, 9(11), 5–16. https://doi.org/10.55640/ijcsis/Volume09Issue11-02

Shahbazi, Z., & Byun, Y. C. (2021). Integration of blockchain, IoT and machine learning for multistage quality control and enhancing security in smart manufacturing. Sensors, 21(4), 1467.

Das, A. C., Mozumder, M. S. A., Hasan, M. A., Bhuiyan, M., Islam, M. R., Hossain, M. N., ... & Alam, M. I. (2024). MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY. The American Journal of Engineering and Technology, 6(10), 42-53.

Al Mamun, A., Hossain, M. S., Rishad, S. S. I., Rahman, M. M., Tisha, S. A., Shakil, F., ... & Sultana, S. (2024). MACHINE LEARNING FOR STOCK MARKET SECURITY MEASUREMENT: A COMPARATIVE ANALYSIS OF SUPERVISED, UNSUPERVISED, AND DEEP LEARNING MODELS. International journal of networks and security, 4(01), 22-32.

Akter, S., Mahmud, F., Rahman, T., Ahmmed, M. J., Uddin, M. K., Alam, M. I., ... & Jui, A. H. (2024). A COMPREHENSIVE STUDY OF MACHINE LEARNING APPROACHES FOR CUSTOMER SENTIMENT ANALYSIS IN BANKING SECTOR. The American Journal of Engineering and Technology, 6(10), 100-111.

Shahid, R., Mozumder, M. A. S., Sweet, M. M. R., Hasan, M., Alam, M., Rahman, M. A., ... & Islam, M. R. (2024). Predicting Customer Loyalty in the Airline Industry: A Machine Learning Approach Integrating Sentiment Analysis and User Experience. International Journal on Computational Engineering, 1(2), 50-54.

Md Risalat Hossain Ontor, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo, & Ashequr Rahman. (2024). LEVERAGING DIGITAL TRANSFORMATION AND SOCIAL MEDIA ANALYTICS FOR OPTIMIZING US FASHION BRANDS’ PERFORMANCE: A MACHINE LEARNING APPROACH. International Journal of Computer Science & Information System, 9(11), 45–56. https://doi.org/10.55640/ijcsis/Volume09Issue11-05

COMPARATIVE PERFORMANCE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BUSINESS INTELLIGENCE: A STUDY ON CLASSIFICATION AND REGRESSION MODELS. (2024). International Journal of Business and Management Sciences, 4(11), 06-18. https://doi.org/10.55640/ijbms-04-11-02

Naznin, R., Sarkar, M. A. I., Asaduzzaman, M., Akter, S., Mou, S. N., Miah, M. R., ... & Sajal, A. (2024). ENHANCING SMALL BUSINESS MANAGEMENT THROUGH MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS FOR CUSTOMER RETENTION, FINANCIAL FORECASTING, AND INVENTORY OPTIMIZATION. International Interdisciplinary Business Economics Advancement Journal, 5(11), 21-32.

Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04

Arif, M., Ahmed, M. P., Al Mamun, A., Uddin, M. K., Mahmud, F., Rahman, T., ... & Helal, M. (2024). DYNAMIC PRICING IN FINANCIAL TECHNOLOGY: EVALUATING MACHINE LEARNING SOLUTIONS FOR MARKET ADAPTABILITY. International Interdisciplinary Business Economics Advancement Journal, 5(10), 13-27.

Iqbal, A., Ahmed, E., Rahman, A., & Ontor, M. R. H. (2024). ENHANCING FRAUD DETECTION AND ANOMALY DETECTION IN RETAIL BANKING USING GENERATIVE AI AND MACHINE LEARNING MODELS. International journal of networks and security, 4(01), 33-43.

Rahman, M. M., Akhi, S. S., Hossain, S., Ayub, M. I., Siddique, M. T., Nath, A., ... & Hassan, M. M. (2024). EVALUATING MACHINE LEARNING MODELS FOR OPTIMAL CUSTOMER SEGMENTATION IN BANKING: A COMPARATIVE STUDY. The American Journal of Engineering and Technology, 6(12), 68-83.

Bhattacharjee, B., Mou, S. N., Hossain, M. S., Rahman, M. K., Hassan, M. M., Rahman, N., ... & Haque, M. S. U. (2024). MACHINE LEARNING FOR COST ESTIMATION AND FORECASTING IN BANKING: A COMPARATIVE ANALYSIS OF ALGORITHMS. International journal of business and management sciences, 4(12), 6-17.

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. International journal of business and management sciences, 4(12), 18-32.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Md Parvez Ahmed, Ashim Chandra Das, Pinky Akter, Sanjida Nowshin Mou, Sanjida Akter Tisha, Farhan Shakil, Pritom Das, Md Khalilor Rahman, & Adib Ahmed. (2024). HARNESSING MACHINE LEARNING MODELS FOR ACCURATE CUSTOMER LIFETIME VALUE PREDICTION: A COMPARATIVE STUDY IN MODERN BUSINESS ANALYTICS. International Journal of Computer Science & Information System, 9(12), 06–22. https://doi.org/10.55640/ijcsis/Volume09Issue12-02