Articles | Open Access | DOI: https://doi.org/10.55640/ijcsis/Volume10Issue01-02

LEVERAGING AI AND MACHINE LEARNING FOR PREDICTING, DETECTING, AND MITIGATING CYBERSECURITY THREATS: A COMPARATIVE STUDY OF ADVANCED MODELS

S M Shadul Islam Rishad , Master Of Science in Information Technology, Westcliff University, USA
Farhan Shakil , Master’s in Cybersecurity Operations, Webster University, Saint Louis, MO, USA
Sanjida Akter Tisha , Master of Science in Information Technology, Washington University of Science and Technology, USA
Sadia Afrin , Department of Computer & Information Science, Gannon University, USA
Md Mehedi Hassan , Master of Science in Information Technology, Washington University of Science and Technology, USA
Mashaeikh Zaman Md. Eftakhar Choudhury , Master of Social Science in Security Studies, Bangladesh University of Professional (BUP), Dhaka
Nabila Rahman , Master’s in information technology management, Webster University, USA

Abstract

This study investigates the use of artificial intelligence (AI) and machine learning (ML) models to predict, detect, and mitigate cybersecurity threats, including zero-day attacks, ransomware, and insider threats. Using a comprehensive dataset of network logs and attack signatures, we evaluated models such as Logistic Regression, Random Forest, XGBoost, CNN, and LSTMOur results demonstrate that deep learning models, particularly CNN (97.3% AUC-ROC) and LSTM (96.8% AUC-ROC), significantly outperform traditional methods, excelling in real-time threat detection and minimizing false positives. This study highlights the practical applicability of AI and ML in enhancing cybersecurity frameworks, paving the way for more efficient and scalable solutions against evolving threats.

Keywords

Cybersecurity, Artificial Intelligence, Machine Learning, Threat Detection

References

Md Habibur Rahman, Ashim Chandra Das, Md Shujan Shak, Md Kafil Uddin, Md Imdadul Alam, Nafis Anjum, Md Nad Vi Al Bony, & Murshida Alam. (2024). TRANSFORMING CUSTOMER RETENTION IN FINTECH INDUSTRY THROUGH PREDICTIVE ANALYTICS AND MACHINE LEARNING. The American Journal of Engineering and Technology, 6(10), 150–163. https://doi.org/10.37547/tajet/Volume06Issue10-17

Tauhedur Rahman, Md Kafil Uddin, Biswanath Bhattacharjee, Md Siam Taluckder, Sanjida Nowshin Mou, Pinky Akter, Md Shakhaowat Hossain, Md Rashel Miah, & Md Mohibur Rahman. (2024). BLOCKCHAIN APPLICATIONS IN BUSINESS OPERATIONS AND SUPPLY CHAIN MANAGEMENT BY MACHINE LEARNING. International Journal of Computer Science & Information System, 9(11), 17–30. https://doi.org/10.55640/ijcsis/Volume09Issue11-03

Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04

Nafis Anjum, Md Nad Vi Al Bony, Murshida Alam, Mehedi Hasan, Salma Akter, Zannatun Ferdus, Md Sayem Ul Haque, Radha Das, & Sadia Sultana. (2024). COMPARATIVE ANALYSIS OF SENTIMENT ANALYSIS MODELS ON BANKING INVESTMENT IMPACT BY MACHINE LEARNING ALGORITHM. International Journal of Computer Science & Information System, 9(11), 5–16. https://doi.org/10.55640/ijcsis/Volume09Issue11-02

Das, A. C., Mozumder, M. S. A., Hasan, M. A., Bhuiyan, M., Islam, M. R., Hossain, M. N., ... & Alam, M. I. (2024). MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY. The American Journal of Engineering and Technology, 6(10), 42-53.

Akter, S., Mahmud, F., Rahman, T., Ahmmed, M. J., Uddin, M. K., Alam, M. I., ... & Jui, A. H. (2024). A COMPREHENSIVE STUDY OF MACHINE LEARNING APPROACHES FOR CUSTOMER SENTIMENT ANALYSIS IN BANKING SECTOR. The American Journal of Engineering and Technology, 6(10), 100-111.

Md Risalat Hossain Ontor, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo, & Ashequr Rahman. (2024). LEVERAGING DIGITAL TRANSFORMATION AND SOCIAL MEDIA ANALYTICS FOR OPTIMIZING US FASHION BRANDS’ PERFORMANCE: A MACHINE LEARNING APPROACH. International Journal of Computer Science & Information System, 9(11), 45–56. https://doi.org/10.55640/ijcsis/Volume09Issue11-05

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. International journal of business and management sciences, 4(12), 18-32.

Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04

Arif, M., Ahmed, M. P., Al Mamun, A., Uddin, M. K., Mahmud, F., Rahman, T., ... & Helal, M. (2024). DYNAMIC PRICING IN FINANCIAL TECHNOLOGY: EVALUATING MACHINE LEARNING SOLUTIONS FOR MARKET ADAPTABILITY. International Interdisciplinary Business Economics Advancement Journal, 5(10), 13-27.

Uddin, M. K., Akter, S., Das, P., Anjum, N., Akter, S., Alam, M., ... & Pervin, T. (2024). MACHINE LEARNING-BASED EARLY DETECTION OF KIDNEY DISEASE: A COMPARATIVE STUDY OF PREDICTION MODELS AND PERFORMANCE EVALUATION. International Journal of Medical Science and Public Health Research, 5(12),58-75.

Ponemon Institute. (2023). Cost of a Data Breach Report 2023. IBM Security. Retrieved from https://www.ibm.com/security/data-breach.

Nguyen, T., Le, Q., & Vu, H. (2022). Machine learning for ransomware detection: A comparative analysis of algorithms. Journal of Cybersecurity Research, 15(3), 105–120.

Khan, M. U., Zafar, A., & Ahmed, I. (2021). Deep learning in cybersecurity: Applications and challenges. IEEE Transactions on Information Forensics and Security, 16(8), 1875–1890. https://doi.org/10.1109/TIFS.2021.3051148.

Siddiqui, F., Alam, S., & Hassan, M. (2020). Detecting zero-day attacks using anomaly-based machine learning models. Journal of Network Security, 12(4), 312–330.

Zhang, Y., Li, X., & Wang, J. (2023). Classification of ransomware using ensemble machine learning models. Computers & Security, 122, 102759. https://doi.org/10.1016/j.cose.2023.102759.

Jain, P., Gupta, R., & Kaur, H. (2022). Detection of insider threats using anomaly-based machine learning techniques. Cybersecurity and Privacy, 1(2), 210–225. https://doi.org/10.3390/cybersecurity1020015.

Gupta, R., & Sharma, A. (2021). A comparative study of machine learning models for real-time cybersecurity threat detection. International Journal of Computer Applications, 183(7), 17–25. https://doi.org/10.5120/ijca202118307.

Zhang, J., Wu, T., & Lin, H. (2020). Application of convolutional neural networks in detecting advanced persistent threats. IEEE Access, 8, 49332–49345. https://doi.org/10.1109/ACCESS.2020.2981249.

Jain, A., Verma, K., & Sinha, S. (2021). Real-time applications of LSTM for analyzing time-series data in cybersecurity. Expert Systems with Applications, 165, 113898. https://doi.org/10.1016/j.eswa.2020.113898

Shak, M. S., Uddin, A., Rahman, M. H., Anjum, N., Al Bony, M. N. V., Alam, M., ... & Pervin, T. (2024). INNOVATIVE MACHINE LEARNING APPROACHES TO FOSTER FINANCIAL INCLUSION IN MICROFINANCE. International Interdisciplinary Business Economics Advancement Journal, 5(11), 6-20.

Naznin, R., Sarkar, M. A. I., Asaduzzaman, M., Akter, S., Mou, S. N., Miah, M. R., ... & Sajal, A. (2024). ENHANCING SMALL BUSINESS MANAGEMENT THROUGH MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS FOR CUSTOMER RETENTION, FINANCIAL FORECASTING, AND INVENTORY OPTIMIZATION. International Interdisciplinary Business Economics Advancement Journal, 5(11), 21-32.

Bhattacharjee, B., Mou, S. N., Hossain, M. S., Rahman, M. K., Hassan, M. M., Rahman, N., ... & Haque, M. S. U. (2024). MACHINE LEARNING FOR COST ESTIMATION AND FORECASTING IN BANKING: A COMPARATIVE ANALYSIS OF ALGORITHMS. Frontline Marketing, Management and Economics Journal, 4(12), 66-83.

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. Frontline Marketing, Management and Economics Journal, 4(12), 84-106.

Al Mamun, A., Hossain, M. S., Rishad, S. S. I., Rahman, M. M., Shakil, F., Choudhury, M. Z. M. E., ... & Sultana, S. (2024). MACHINE LEARNING FOR STOCK MARKET SECURITY MEASUREMENT: A COMPARATIVE ANALYSIS OF SUPERVISED, UNSUPERVISED, AND DEEP LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 63-76.

Das, A. C., Rishad, S. S. I., Akter, P., Tisha, S. A., Afrin, S., Shakil, F., ... & Rahman, M. M. (2024). ENHANCING BLOCKCHAIN SECURITY WITH MACHINE LEARNING: A COMPREHENSIVE STUDY OF ALGORITHMS AND APPLICATIONS. The American Journal of Engineering and Technology, 6(12), 150-162.

Rahman, M. M., Akhi, S. S., Hossain, S., Ayub, M. I., Siddique, M. T., Nath, A., ... & Hassan, M. M. (2024). EVALUATING MACHINE LEARNING MODELS FOR OPTIMAL CUSTOMER SEGMENTATION IN BANKING: A COMPARATIVE STUDY. The American Journal of Engineering and Technology, 6(12), 68-83.

Das, P., Pervin, T., Bhattacharjee, B., Karim, M. R., Sultana, N., Khan, M. S., ... & Kamruzzaman, F. N. U. (2024). OPTIMIZING REAL-TIME DYNAMIC PRICING STRATEGIES IN RETAIL AND E-COMMERCE USING MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(12), 163-177.

Hossain, M. N., Hossain, S., Nath, A., Nath, P. C., Ayub, M. I., Hassan, M. M., ... & Rasel, M. (2024). ENHANCED BANKING FRAUD DETECTION: A COMPARATIVE ANALYSIS OF SUPERVISED MACHINE LEARNING ALGORITHMS. American Research Index Library, 23-35.

Shak, M. S., Mozumder, M. S. A., Hasan, M. A., Das, A. C., Miah, M. R., Akter, S., & Hossain, M. N. (2024). OPTIMIZING RETAIL DEMAND FORECASTING: A PERFORMANCE EVALUATION OF MACHINE LEARNING MODELS INCLUDING LSTM AND GRADIENT BOOSTING. The American Journal of Engineering and Technology, 6(09), 67-80.

Das, A. C., Mozumder, M. S. A., Hasan, M. A., Bhuiyan, M., Islam, M. R., Hossain, M. N., ... & Alam, M. I. (2024). MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY. The American Journal of Engineering and Technology, 6(10), 42-53.

Hossain, M. N., Anjum, N., Alam, M., Rahman, M. H., Taluckder, M. S., Al Bony, M. N. V., ... & Jui, A. H. (2024). PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR LUNG CANCER PREDICTION: A COMPARATIVE STUDY. International Journal of Medical Science and Public Health Research, 5(11), 41-55.

Miah, J., Khan, R. H., Ahmed, S., & Mahmud, M. I. (2023, June). A comparative study of detecting covid 19 by using chest X-ray images–A deep learning approach. In 2023 IEEE World AI IoT Congress (AIIoT) (pp. 0311-0316). IEEE.

Khan, R. H., Miah, J., Nipun, S. A. A., & Islam, M. (2023, March). A Comparative Study of Machine Learning classifiers to analyze the Precision of Myocardial Infarction prediction. In 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0949-0954). IEEE.

Kayyum, S., Miah, J., Shadaab, A., Islam, M. M., Islam, M., Nipun, S. A. A., ... & Al Faisal, F. (2020, January). Data analysis on myocardial infarction with the help of machine learning algorithms considering distinctive or non-distinctive features. In 2020 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-7). IEEE.

Islam, M. M., Nipun, S. A. A., Islam, M., Rahat, M. A. R., Miah, J., Kayyum, S., ... & Al Faisal, F. (2020). An empirical study to predict myocardial infarction using k-means and hierarchical clustering. In Machine Learning, Image Processing, Network Security and Data Sciences: Second International Conference, MIND 2020, Silchar, India, July 30-31, 2020, Proceedings, Part II 2 (pp. 120-130). Springer Singapore.

Miah, J., Ca, D. M., Sayed, M. A., Lipu, E. R., Mahmud, F., & Arafat, S. Y. (2023, November). Improving Cardiovascular Disease Prediction Through Comparative Analysis of Machine Learning Models: A Case Study on Myocardial Infarction. In 2023 15th International Conference on Innovations in Information Technology (IIT) (pp. 49-54). IEEE.

Khan, R. H., Miah, J., Rahat, M. A. R., Ahmed, A. H., Shahriyar, M. A., & Lipu, E. R. (2023, September). A Comparative Analysis of Machine Learning Approaches for Chronic Kidney Disease Detection. In 2023 8th International Conference on Electrical, Electronics and Information Engineering (ICEEIE) (pp. 1-6). IEEE.

Miah, J., Cao, D. M., Sayed, M. A., Taluckder, M. S., Haque, M. S., & Mahmud, F. (2023). Advancing Brain Tumor Detection: A Thorough Investigation of CNNs, Clustering, and SoftMax Classification in the Analysis of MRI Images. arXiv preprint arXiv:2310.17720.

Rahman, M. M., Islam, A. M., Miah, J., Ahmad, S., & Mamun, M. (2023, June). sleepWell: Stress Level Prediction Through Sleep Data. Are You Stressed?. In 2023 IEEE World AI IoT Congress (AIIoT) (pp. 0229-0235). IEEE.

Rahman, M. M., Islam, A. M., Miah, J., Ahmad, S., & Hasan, M. M. (2023, June). Empirical Analysis with Component Decomposition Methods for Cervical Cancer Risk Assessment. In 2023 IEEE World AI IoT Congress (AIIoT) (pp. 0513-0519). IEEE.

Khan, R. H., Miah, J., Nipun, S. A. A., Islam, M., Amin, M. S., & Taluckder, M. S. (2023, September). Enhancing Lung Cancer Diagnosis with Machine Learning Methods and Systematic Review Synthesis. In 2023 8th International Conference on Electrical, Electronics and Information Engineering (ICEEIE) (pp. 1-5). IEEE.

Miah, J. (2024). HOW FAMILY DNA CAN CAUSE LUNG CANCER USING MACHINE LEARNING. International Journal of Medical Science and Public Health Research, 5(12), 8-14.

Miah, J., Khan, R. H., Linkon, A. A., Bhuiyan, M. S., Jewel, R. M., Ayon, E. H., ... & Tanvir Islam, M. (2024). Developing a Deep Learning Methodology to Anticipate the Onset of Diabetic Retinopathy at an Early Stage. In Innovative and Intelligent Digital Technologies; Towards an Increased Efficiency: Volume 1 (pp. 77-91). Cham: Springer Nature Switzerland.

Hasan, M., Pathan, M. K. M., & Kabir, M. F. (2024). Functionalized Mesoporous Silica Nanoparticles as Potential Drug Delivery Vehicle against Colorectal Cancer. Journal of Medical and Health Studies, 5(3), 56-62.

Hasan, M. (2023). SURFACE-ENGINEERED MINERAL PARTICLES FOR GATED DRUG DELIVERY, GENE TRANSFER AND SUNSCREEN FORMULATIONS.

Hasan, M., Kabir, M. F., & Pathan, M. K. M. (2024). PEGylation of Mesoporous Silica Nanoparticles for Drug Delivery Applications. Journal of Chemistry Studies, 3(2), 01-06.

Hasan, M., Evett, C. G., & Burton, J. (2024). Advances in Nanoparticle-Based Targeted Drug Delivery Systems for Colorectal Cancer Therapy: A Review. arXiv preprint arXiv:2409.05222.

Hasan, M., & Mahama, M. T. (2024). Uncovering the complex mechanisms behind nanomaterials-based plasmon-driven photocatalysis through the utilization of Surface-Enhanced Raman Spectroscopies. arXiv preprint arXiv:2408.13927.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

S M Shadul Islam Rishad, Farhan Shakil, Sanjida Akter Tisha, Sadia Afrin, Md Mehedi Hassan, Mashaeikh Zaman Md. Eftakhar Choudhury, & Nabila Rahman. (2025). LEVERAGING AI AND MACHINE LEARNING FOR PREDICTING, DETECTING, AND MITIGATING CYBERSECURITY THREATS: A COMPARATIVE STUDY OF ADVANCED MODELS. International Journal of Computer Science & Information System, 10(01), 06–25. https://doi.org/10.55640/ijcsis/Volume10Issue01-02