Articles | Open Access | DOI: https://doi.org/10.55640/ijcsis/Volume10Issue02-02

HYBRID MULTI-MODAL DETECTION FRAMEWORK FOR ADVANCED PERSISTENT THREATS IN CORPORATE NETWORKS USING MACHINE LEARNING AND DEEP LEARNING

Farhan Shakil , Masters in Cybersecurity Operations, Webster University, Saint Louis, MO, USA
Sadia Afrin , Department of Computer & Information Science, Gannon University, USA
Abdullah Al Mamun , Department of Computer & Info Science, Gannon University, Erie, Pennsylvania, USA
Md Khorshed Alam , Department of Professional Security Studies, New Jersey City University, Jersey City, New Jersey, USA
Md Tarek Hasan , Department of Professional Security Studies, New Jersey City University, Jersey City, New Jersey, USA
Jayveersinh Vansiya , Department of Computer & Information Science, Gannon University, USA
Asha Chandi , Department of Computer & Information Science, Gannon University, USA

Abstract

This study addresses the challenge of detecting Advanced Persistent Threats (APTs) in corporate networks by developing a hybrid multi-modal detection framework. We combine traditional machine learning models, deep learning architectures, and transformer-based models to improve the detection of sophisticated and stealthy cyber threats. A comprehensive dataset, consisting of network traffic and event logs, was processed through rigorous data preprocessing, feature engineering, and model development. The results show that the hybrid ensemble model, integrating Gradient Boosting and Transformer-based architectures, outperforms all other models, achieving 98.7% accuracy, 98.3% precision, and 97.9% recall, while maintaining a false positive rate below 1%. The model demonstrated exceptional performance in real-world simulations, detecting over 98% of malicious activities. Our findings highlight the importance of combining the strengths of classical and advanced machine learning techniques for effective APT detection and mitigation, providing a reliable, scalable solution for real-time cybersecurity.

Keywords

Advanced Persistent Threats, APT detection, hybrid models

References

Md Risalat Hossain Ontor, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo, & Ashequr Rahman. (2024). LEVERAGING DIGITAL TRANSFORMATION AND SOCIAL MEDIA ANALYTICS FOR OPTIMIZING US FASHION BRANDS’ PERFORMANCE: A MACHINE LEARNING APPROACH. International Journal of Computer Science & Information System, 9(11), 45–56. https://doi.org/10.55640/ijcsis/Volume09Issue11-05

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. International journal of business and management sciences, 4(12), 18-32.

Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04

Iqbal, A., Ahmed, E., Rahman, A., & Ontor, M. R. H. (2024). ENHANCING FRAUD DETECTION AND ANOMALY DETECTION IN RETAIL BANKING USING GENERATIVE AI AND MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 78-91.

Uddin, M. K., Akter, S., Das, P., Anjum, N., Akter, S., Alam, M., ... & Pervin, T. (2024). MACHINE LEARNING-BASED EARLY DETECTION OF KIDNEY DISEASE: A COMPARATIVE STUDY OF PREDICTION MODELS AND PERFORMANCE EVALUATION. International Journal of Medical Science and Public HealthResearch, 5(12),58-75.

Shak, M. S., Uddin, A., Rahman, M. H., Anjum, N., Al Bony, M. N. V., Alam, M., ... & Pervin, T. (2024). INNOVATIVE MACHINE LEARNING APPROACHES TO FOSTER FINANCIAL INCLUSION IN MICROFINANCE. International Interdisciplinary Business Economics Advancement Journal, 5(11), 6-20.

Naznin, R., Sarkar, M. A. I., Asaduzzaman, M., Akter, S., Mou, S. N., Miah, M. R., ... & Sajal, A. (2024). ENHANCING SMALL BUSINESS MANAGEMENT THROUGH MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS FOR CUSTOMER RETENTION, FINANCIAL FORECASTING, AND INVENTORY OPTIMIZATION. International Interdisciplinary Business Economics Advancement Journal, 5(11), 21-32.

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. Frontline Marketing, Management and Economics Journal, 4(12), 84-106.

Al Mamun, A., Hossain, M. S., Rishad, S. S. I., Rahman, M. M., Shakil, F., Choudhury, M. Z. M. E., ... & Sultana, S. (2024). MACHINE LEARNING FOR STOCK MARKET SECURITY MEASUREMENT: A COMPARATIVE ANALYSIS OF SUPERVISED, UNSUPERVISED, AND DEEP LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 63-76.

Miah, J., Khan, R. H., Linkon, A. A., Bhuiyan, M. S., Jewel, R. M., Ayon, E. H., ... & Tanvir Islam, M. (2024). Developing a Deep Learning Methodology to Anticipate the Onset of Diabetic Retinopathy at an Early Stage. In Innovative and Intelligent Digital Technologies; Towards an Increased Efficiency: Volume 1 (pp. 77-91). Cham: Springer Nature Switzerland.

Rahman, M. H., Das, A. C., Shak, M. S., Uddin, M. K., Alam, M. I., Anjum, N., ... & Alam, M. (2024). TRANSFORMING CUSTOMER RETENTION IN FINTECH INDUSTRY THROUGH PREDICTIVE ANALYTICS AND MACHINE LEARNING. The American Journal of Engineering and Technology, 6(10), 150-163.

Chowdhury, M. S., Shak, M. S., Devi, S., Miah, M. R., Al Mamun, A., Ahmed, E., ... & Mozumder, M. S. A. (2024). Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction. The American Journal of Engineering and Technology, 6(09), 6-17.

Bhuiyan, R. J., Akter, S., Uddin, A., Shak, M. S., Islam, M. R., Rishad, S. S. I., ... & Hasan-Or-Rashid, M. (2024). SENTIMENT ANALYSIS OF CUSTOMER FEEDBACK IN THE BANKING SECTOR: A COMPARATIVE STUDY OF MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(10), 54-66.

Mozumder, M. A. S., Mahmud, F., Shak, M. S., Sultana, N., Rodrigues, G. N., Al Rafi, M., ... & Bhuiyan, M. S. M. (2024). Optimizing customer segmentation in the banking sector: a comparative analysis of machine learning algorithms. Journal of Computer Science and Technology Studies, 6(4), 01-07.

Rahman, M. M., Akhi, S. S., Hossain, S., Ayub, M. I., Siddique, M. T., Nath, A., ... & Hassan, M. M. (2024). EVALUATING MACHINE LEARNING MODELS FOR OPTIMAL CUSTOMER SEGMENTATION IN BANKING: A COMPARATIVE STUDY. The American Journal of Engineering and Technology, 6(12), 68-83.

Das, P., Pervin, T., Bhattacharjee, B., Karim, M. R., Sultana, N., Khan, M. S., ... & Kamruzzaman, F. N. U. (2024). OPTIMIZING REAL-TIME DYNAMIC PRICING STRATEGIES IN RETAIL AND E-COMMERCE USING MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(12), 163-177.

Hossain, M. N., Hossain, S., Nath, A., Nath, P. C., Ayub, M. I., Hassan, M. M., ... & Rasel, M. (2024). ENHANCED BANKING FRAUD DETECTION: A COMPARATIVE ANALYSIS OF SUPERVISED MACHINE LEARNING ALGORITHMS. American Research Index Library, 23-35.

Hossain, M. N., Anjum, N., Alam, M., Rahman, M. H., Taluckder, M. S., Al Bony, M. N. V., ... & Jui, A. H. (2024). PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR LUNG CANCER PREDICTION: A COMPARATIVE STUDY. International Journal of Medical Science and Public Health Research, 5(11), 41-55.

Al Bony, M. N. V., Das, P., Pervin, T., Shak, M. S., Akter, S., Anjum, N., ... & Rahman, M. K. (2024). COMPARATIVE PERFORMANCE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BUSINESS INTELLIGENCE: A STUDY ON CLASSIFICATION AND REGRESSION MODELS. Frontline Marketing, Management and Economics Journal, 4(11), 72-92.

Hasan, M., Kabir, M. F., & Pathan, M. K. M. (2024). PEGylation of Mesoporous Silica Nanoparticles for Drug Delivery Applications. Journal of Chemistry Studies, 3(2), 01-06.

Nguyen, A. T. P., Jewel, R. M., & Akter, A. (2025). Comparative Analysis of Machine Learning Models for Automated Skin Cancer Detection: Advancements in Diagnostic Accuracy and AI Integration. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 15-26.

Nguyen, A. T. P., Shak, M. S., & Al-Imran, M. (2024). ADVANCING EARLY SKIN CANCER DETECTION: A COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR MELANOMA DIAGNOSIS USING DERMOSCOPIC IMAGES. International Journal of Medical Science and Public Health Research, 5(12), 119-133.

Phan, H. T. N., & Akter, A. (2025). Predicting the Effectiveness of Laser Therapy in Periodontal Diseases Using Machine Learning Models. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 27-37.

Phan, H. T. N. (2024). EARLY DETECTION OF ORAL DISEASES USING MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS AND DIAGNOSTIC ACCURACY. International Journal of Medical Science and Public Health Research, 5(12), 107-118.

Rishad, S. S. I., Shakil, F., Tisha, S. A., Afrin, S., Hassan, M. M., Choudhury, M. Z. M. E., & Rahman, N. (2025). LEVERAGING AI AND MACHINE LEARNING FOR PREDICTING, DETECTING, AND MITIGATING CYBERSECURITY THREATS: A COMPARATIVE STUDY OF ADVANCED MODELS. American Research Index Library, 6-25.

Uddin, A., Pabel, M. A. H., Alam, M. I., KAMRUZZAMAN, F., Haque, M. S. U., Hosen, M. M., ... & Ghosh, S. K. (2025). Advancing Financial Risk Prediction and Portfolio Optimization Using Machine Learning Techniques. The American Journal of Management and Economics Innovations, 7(01), 5-20.

Ahmed, M. P., Das, A. C., Akter, P., Mou, S. N., Tisha, S. A., Shakil, F., ... & Ahmed, A. (2024). HARNESSING MACHINE LEARNING MODELS FOR ACCURATE CUSTOMER LIFETIME VALUE PREDICTION: A COMPARATIVE STUDY IN MODERN BUSINESS ANALYTICS. American Research Index Library, 06-22.

Nguyen, Q. G., Nguyen, L. H., Hosen, M. M., Rasel, M., Shorna, J. F., Mia, M. S., & Khan, S. I. (2025). Enhancing Credit Risk Management with Machine Learning: A Comparative Study of Predictive Models for Credit Default Prediction. The American Journal of Applied sciences, 7(01), 21-30.

Hossain, M. N., Anjum, N., Alam, M., Rahman, M. H., Das, A. C., Hosen, M. M., ... & Jui, A. H. (2024). PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR LUNG CANCER PREDICTION: A COMPARATIVE STUDY. International Journal of Medical Science and Public Health Research, 5(11), 41-55.

Bhattacharjee, B., Mou, S. N., Hossain, M. S., Rahman, M. K., Hassan, M. M., Rahman, N., ... & Haque, M. S. U. (2024). MACHINE LEARNING FOR COST ESTIMATION AND FORECASTING IN BANKING: A COMPARATIVE ANALYSIS OF ALGORITHMS. Frontline Marketing,Management and Economics Journal, 4(12), 66-83.

Chollet, F. (2015). Keras: Deep learning library for Python. https://keras.io

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Gilpin, L. H., Bau, D., Caruana, R., & Kim, B. (2018). Explaining explanations: An overview of interpretability of machine learning. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3173574.3174157

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the Support of a High-Dimensional Distribution. Neural Computation, 13(7), 1443–1471. https://doi.org/10.1162/089976601316957747

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. A., Kaiser, Ł., Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.

Yu, Z., Liu, L., Zhang, L., & Li, Z. (2019). A hybrid model for APT detection based on Random Forest and deep learning. Security and Privacy, 2(1), e45. https://doi.org/10.1002/spy2.45

Zhou, Z. H. (2012). Ensemble methods: Foundations and algorithms. CRC Press.

Zuev, M. A., Bian, J., & Deng, L. (2018). A survey of the state of the art in intrusion detection systems and APT detection. Journal of Cybersecurity, 4(1), 1–14. https://doi.org/10.1093/cybsec/tyx002

Zhang, L., Zhao, K., & Chen, Y. (2020). Deep learning for APT detection: A review. Future Generation Computer Systems, 108, 121–130. https://doi.org/10.1016/j.future.2020.02.023

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Farhan Shakil, Sadia Afrin, Abdullah Al Mamun, Md Khorshed Alam, Md Tarek Hasan, Jayveersinh Vansiya, & Asha Chandi. (2025). HYBRID MULTI-MODAL DETECTION FRAMEWORK FOR ADVANCED PERSISTENT THREATS IN CORPORATE NETWORKS USING MACHINE LEARNING AND DEEP LEARNING. International Journal of Computer Science & Information System, 10(02), 6–20. https://doi.org/10.55640/ijcsis/Volume10Issue02-02