Articles | Open Access |

Integrating Failure Mode and Effect Analysis with Technical Language Processing for Enhanced Maintenance Insights

Dr. Radmila Juric , Senior Lecturer in Computer Science, University of Westminster, UK

Abstract

In technical domains, particularly asset management and maintenance, vast amounts of valuable information are captured in unstructured text formats such as work orders, maintenance logs, and inspection reports [1, 4, 28, 30]. Extracting actionable insights from this "technical language" is challenging using traditional methods [1, 15]. Concurrently, Failure Mode and Effect Analysis (FMEA) is a widely adopted systematic approach for identifying potential failure modes within a system, analyzing their causes and effects, and prioritizing risks [2, 6]. While powerful, traditional FMEA is often a manual and labor-intensive process, relying on expert knowledge and structured data [8]. This article explores the integration of FMEA principles with Technical Language Processing (TLP) techniques to automate and enhance the extraction, analysis, and utilization of failure-related information from unstructured technical text. We propose a conceptual framework where TLP methods are employed to identify potential failure modes, effects, and causes within technical documentation. These extracted elements can then be structured and analyzed using FMEA principles to provide data-driven insights into asset reliability and maintenance needs [5]. This integration has the potential to improve the efficiency and effectiveness of FMEA, unlock hidden knowledge within maintenance data, and support proactive maintenance strategies.

Keywords

Failure Mode and Effect Analysis (FMEA), Technical Language Processing (TLP), Natural Language Processing (NLP)

References

Brundage, M.P.; Sexton, T.; Hodkiewicz, M.; Dima, A.; Lukens, S. Technical language processing: Unlocking maintenance knowledge. Manuf. Lett. 2021, 27, 42–46.

International Electrotechnical Commission. IEC 60812: Failure Modes and Effects Analysis (FMEA and FMECA), Edition 3.0; International Electrotechnical Commission: Geneva, Switzerland, 2018.

Unsworth, K.; Adriasola, E.; Johnston-Billings, A.; Dmitrieva, A.; Hodkiewicz, M. Goal hierarchy: Improving asset data quality by improving motivation. Reliab. Eng. Syst. Saf. 2011, 96, 1474–1481.

Sexton, T.; Hodkiewicz, M.; Brundage, M.P. Categorization errors for data entry in maintenance work-orders. In Proceedings of the Annual Conference of the PHM Society, Scottsdale, AZ, USA, 2–5 September 2019; Volume 11.

Payette, M.; Abdul-Nour, G. Asset Management, Reliability and Prognostics Modeling Techniques. Sustainability 2023, 15, 7493.

Zio, E. An Introduction to the Basics of Reliability and Risk Analysis; Series on Quality, Reliability and Engineering Statistics; World Scientific: Singapore, 2007.

Islam, H. Reliability-centered maintenance methodology and application: A case study. Engineering 2010, 2, 863–873.

Boral, S.; Howard, I.; Chaturvedi, S.K.; McKee, K.; Naikan, V.N.A. An integrated approach for fuzzy failure modes and effects analysis using fuzzy AHP and fuzzy MAIRCA. Eng. Fail. Anal. 2020, 108, 104195.

Joseph, S.R.; Hlomani, H.; Letsholo, K.; Kaniwa, F.; Sedimo, K. Natural language processing: A review. Int. J. Res. Eng. Appl. Sci. 2016, 6, 207–210.

Jurafsky, D. Speech & Language Processing; Pearson Education India: Hoboken, NJ, USA, 2000.

Nadkarni, P.M.; Ohno-Machado, L.; Chapman, W.W. Natural language processing: An introduction. J. Am. Med. Inform. Assoc. 2011, 18, 544–551.

Thanaki, J. Python Natural Language Processing; Packt Publishing Ltd.: Birmingham, UK, 2017.

Bansal, A. Advanced Natural Language Processing with TensorFlow 2: Build Effective Real-World NLP Applications Using NER, RNNs, Seq2Seq Models, Transformers, and More; Packt Publishing Ltd.: Birmingham, UK, 2021.

Beysolow, T., II. Applied Natural Language Processing with Python: Implementing Machine Learning and Deep Learning Algorithms for Natural Language Processing; Apress: New York, NY, USA, 2018.

Dima, A.; Lukens, S.; Hodkiewicz, M.; Sexton, T.; Brundage, M.P. Adapting natural language processing for technical text. Appl. AI Lett. 2021, 2, e33.

Fort, K. Collaborative Annotation for Reliable Natural Language Processing: Technical and Sociological Aspects; John Wiley & Sons: Hoboken, NJ, USA, 2016.

Yang, X.; He, X.; Liang, Y.; Yang, Y.; Zhang, S.; Xie, P. Transfer learning or self-supervised learning? A tale of two pretraining paradigms. arXiv 2020, arXiv:2007.04234.

De Marneffe, M.C.; Manning, C.D.; Nivre, J.; Zeman, D. Universal dependencies. Comput. Linguist. 2021, 47, 255–308.

Nivre, J.; De Marneffe, M.C.; Ginter, F.; Goldberg, Y.; Hajic, J.; Manning, C.D.; McDonald, R.; Petrov, S.; Pyysalo, S.; Silveira, N.; et al. Universal dependencies v1: A multilingual treebank collection. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia, 23–28 May 2016; pp. 1659–1666.

Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2009.

Honnibal, M.; Johnson, M. An improved non-monotonic transition system for dependency parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 1373–1378.

Řehůřek, R.; Sojka, P. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta, 22 May 2010; pp. 45–50.

Loria, S. TextBlob: Simplified Text Processing. 2018. Version 0.15.1. Available online: https://textblob.readthedocs.io/ (accessed on 2 February 2024).

Manning, C.D.; Surdeanu, M.; Bauer, J.; Finkel, J.R.; Bethard, S.; McClosky, D. The Stanford CoreNLP natural language processing toolkit. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Baltimore, MD, USA, 23–24 June 2014; pp. 55–60.

Gardner, M.; Grus, J.; Neumann, M.; Tafjord, O.; Dasigi, P.; Liu, N.F.; Peters, M.; Schmitz, M.; Zettlemoyer, L.S. AllenNLP: A Deep Semantic Natural Language Processing Platform. arXiv 2017, arXiv:1803.07640.

Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45.

Liu, Z.; Lin, Y.; Sun, M. Representation Learning for Natural Language Processing; Springer Nature: Berlin/Heidelberg, Germany, 2020.

Giordano, V.; Fantoni, G. Decomposing maintenance actions into sub-tasks using natural language processing: A case study in an Italian automotive company. Comput. Ind. 2025, 164, 104186.

Li, H.; Deng, F.; Lu, J.; Zhang, T.; Li, H. An Application of Automatic Text Revision for Power Defect Log. J. Phys. Conf. Ser. 2021, 1757, 012027.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Dr. Radmila Juric. (2025). Integrating Failure Mode and Effect Analysis with Technical Language Processing for Enhanced Maintenance Insights. International Journal of Computer Science & Information System, 10(06), 1–9. Retrieved from https://scientiamreearch.org/index.php/ijcsis/article/view/164